
CS 388R: Randomized Algorithms, Fall 2019 October 1

Lecture 10: Routing

Prof. Eric Price Scribe: Jiacheng Zhuo, Shuo Yang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Introduction - Concentration Inequality

Suppose we have i.i.d. random variables Xi ∈ {0, 1}. The expectation of the sum is given by
E(
∑
Xi) = µ, where µ is small, say O(1) or O(log n). Then how can we bound P[

∑
Xi ≥ t],

especially when t is also very small? (take t ≥ 10µ as an example)

1. Markov: This directly gives P[
∑
Xi ≥ t] ≤ µ/t

2. Multiplicative Chernoff bound: we have

P[X ≥ (1 + ε)µ] ≤ exp(− ε2

2 + ε
µ)

Directly plug ε = 9 into the inequality above, we have that

P[X ≥ (1 + ε)µ] ≤ exp

(
− 81

110
(ε+ 1)µ

)
= exp

(
− 81

110
t

)
The above bound holds for all t ≥ 10µ.

3. Stirling’s approximation: For i.i.d. Xi, we have

P[x ≥ εµ] ≤
(
n

t

)(µ
n

)t
≤
(en
t

)t (µ
n

)t
=
(eµ
t

)2
≤ 2−t

The above bound holds for all t ≥ 2eµ.

2 Routing Problem

Problem Setting Suppose we have a network, node i has a message for some node f(i). Here are
many such nodes that want to send messages and each edge can only pass 1 message at a time.
How should the messages be routed to their destination?

Hyper-cube routing Say we have a graph, which is a hyper-cube. There are N = 2n vertices,
with each vertex can be represented by {0, 1}n. The edge i− j exists if and only if i, j only differs
by 1 bit. It is not hard to see that the total number of edges is n2n−1 = nN/2. This comes from
the fact the each node has degree exactly equals to n. Also, the diameter of the graph is n.

1



Permutation routing is a problem that: given a prermutation π on vertices, node u wants to send
message to π(u). Ideally, the routing is oblivious, which means the path of package (u → π(u))
only depends on u and π(u), and doesn’t depend on any other information.

Bit fixing algorithm Here we first introduce the deterministic bit fixing algorithm: For each
message from i to j, repeatedly fix the first different bit in each time step.

We know that the maximum number of bits needs to be fixed is n. Thus ideally this algorithm can
give us an O(n) time complexity. Unfortunately, this is not the case. Here we give a bad example
where many messages need to pass a single edge.

A bad example Consider the vertex i with first half of bits to be 0 and the other half of bits to
be 1, and its neighbor vertex j, who has a bit 1 at the last 0 bit position of i.

Now consider the permutation routing problem that for points who has n/4 1s in the first n/2
positions, and all 1s in the second n/2 positions. Those nodes want to send message to the nodes
whose first n/2 positions are 1 and second n/2 positions has n/4 1s. Thus we have

# of messages passing i-j =

(
n/2

n/4

)
≈ 2n/2√

n
=

√
N

n

This implies an Ω(
√
N/n) complexity in the worst case. Note that for any deterministic algorithm,

the worst case Ω(
√
N/n) applies.

Solution to the worst case counter example

To address the worst case issue, we proceed the analysis in the following two folds:

• Part I: The average case for bit fixing algorithm

• Part II: A different algorithm that works for all permutation π, by reducing it to part I.

Part I: Average case analysis Suppose we want to route each from i to Xi, where Xi are i.i.d.
uniform vertices. (Note here the Xi doesn’t come from a permutation)

Let’s first define L(e) to be the total number of paths that use edge e. Here the edge e is a directed
edge, since each edge can only send a message at a time, it can not transmit the message for both
direction at the same time. By symmetry, we know that E(L(e)) should be the same for all edges
e. Thus by expressing the total length of all paths, we have

E[total length of all paths] = Nn/2 = NnE[L(e)]

where the first equality comes from number of paths times expected length of each path, the second
equality comes from the number of edges times expected number of paths the use one edge. This
implies that E(L(e)) = 1/2.

Denote L(e) =
∑

i 1i→Xi uses e, from the bound given in the introduction, we have

P[L(e) ≥ t] ≤ 2−t, ∀t ≥ e

This further implies

P[L(e) ≥ 2n] ≤ 2−2n,P[ max
e∈i→Xi

L(e) ≥ 2n] ≤ n2−n

2



where the second inequality comes from union bound. Then, we know that the time to route a
package is less than n× 2n = O(n2) with high probability.

Improve the average case to O(n) Instead of bounding the load of each path, we can bound
the collision. First we define the set of path that is likely to collid with path Pi by

Si = {j|Pj ∩ Pi 6= ∅}.

Lemma 1. Let Ti be the time for packet i to traverse path Pi. We have Ti ≤ n+ |Si|.

Proof. The main idea is to show that, each time the lag (defined later) of the packet i increases by
1, there must be a packet j such that Pj ∈ Si and packet j exits Pi. Therefore the routing time of
packet i is upper bounded by the length of Pi plus the size of Si, as desired.

(The following proof is partially adopted from the lecture notes of CS388G Algorithm and Com-
plexity by Professor Greg Plaxton)

For packet j that is in the queue of the node adjacent to ek ∈ Pi at the start of time step t (i.e.
the packet j is going to traverse / traversing Pi), we define the lag of packet j as t− k.

Define Al,t as the event that the packet i has lag l > 0 at the start of the time step t > 0.

Define Bl,t as the event that there exists a packet j such that Pj ∈ Si, and packet j has lag l > 0
at the start of time step t > 0.

Define Cl as the event that there exists a a packet j such that Pj ∈ Si, and a time step t such that
packet j has lag l at the start of time step t, and leave Pi at the start of time step t+ 1.

All we need to show is that if Al+1,t+1 occurs, then Cl occurs.

If Al+1,t+1 occurs, it is easy to see that Bl,t occurs (otherwise no packet is blocking the packet i).
Let t′ ≥ t denote the maximum time step such that event Bl,t′ occurs. There is a a packet j s.t.
Pj ∈ Si, and at the start of time step t′, packet j has lag l and is in the edge queue of some directed
edge ek of Pi. Some packet j′ (which could be j) advances from this queue during time step t′.
The lags of packets j and j′ are each equal to l at the start of time step t′. It should be easy to see
that j′ 6= i, or t′ = t and Al+1,t+1 cannnot happen. Hence j′ ∈ Si. And j′ will leave the path Pi,
or otherwise t′ would be the largest time step that Bl,t′ occurs (since Bl,t′+1 also occurs).

And hence if Al+1,t+1 occurs, then Cl occurs, and we finish the proof of this lemma.

�

To use the above lemma for our goal, we also need to bound |Si|. Suppose path Pi = {e1, e2, ..., el}.

E[|Si|] ≤ E[|{Pj |∃e, e ∈ Pi ∩ e ∈ Pj}|]

≤ E[

l∑
i=1

L(ei)]

=
l

2
≤ n

2

Think of |Si| =
∑

j 1Pj∩Pi 6=∅, i.e., sum of binomial random variable, with known mean. With what

3



we learn in the beginning in this lecture, we can obtain concentration of |Si| by

P[|Si| ≥ t] ≤ 2−t,∀t ≥ en.

P[|Si| ≥ 4n] ≤ 1

N4

Combined with Lemma 1 we have

P[Ti ≥ 5n] ≤ 1

N4

P[maxTi ≥ 5n] ≤ 1

N3
by union bound

That is, with high probability, we can route any packet within O(n) time.

Part II: A new algorithm

For a permutation matrix, the routing destination can be arbitrarily bad. In order to obtain
randomness as we have in part I,

(1) for each packet i, we uniformly randomly pick a intermediate-destination Xi;

(2) route all the packets to their intermediate-destination;

(3) route all the packets from their intermediate-destination to their destination.

Procedure (2) is exactly what we analyzed in Part I, and hence can be finished in O(n) time with
high probability. Procedure (3) is the inverse of Part I, which the same analysis method applies.
And hence both procedure (2) and (3) succeed with probability (1 − 1/N c)2 > 1 − 2/N c, where c
is a constant that can be set to very large. That is, this procedure succeed with high probability.

4


