CS 388R: Randomized Algorithms, Fall 2019 October 3, 2019

Lecture 11: Fingerprinting

Prof. Eric Price Scribes: Yijun Dong, Anna Yesypenko
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview: fingerprinting

Fingerprinting is a procedure that maps an arbitrarily large data entity to a much smaller bit string,
called fingerprint, that can uniquely identify the original data for all practical purposes in the ideal case
[|. This lecture introduces several different fingerprinting algorithms for matrices and strings,
and discusses their performance and cost.

2 An intuitive way: fingerprinting with hash function

Suppose Alice has a string x € U that she wants to send to Bob. Bob has another string y € U, and
wants to know whether x = y. An intuitive fingerprinting algorithm will be picking a hash function
h : U — [m], and sending the string x in form of (h(x), k). Then Bob will check whether h(y) = h(x).

This algorithm has false negative rate = 0, and false positive rate = % or # for h € ‘H universal
/ pairwise independent, respectively.

Unfortunately, the algorithm is not practical due to its prohibitively large space cost. For instance,
suppose Alice is using the Cater-Wegman hashing: h : [U] — [B] such that h(z) := (az +b) mod p
for some a,b € Z,, p > U for pairwise independence h. Then,

e sending the plain string = takes log U bits, while

o sending (h(x), hqyp) takes log B + 2logp > log U bits.

3 Matrix equality testing

Problem setting Given matrices A, B, C € R™ " for some large n, we want to know whether
AB =_C.

Naive approach Check whether AB — C = 0. Computing AB takes O(n?) FLOPs. It is possible
to improve this step to O(n”) FLOPs for v = 2.373, which is still prohibitively expensive.

Fingerprinting approach Draw a random binary vector r € {0,1}", with i.i.d. entries. Check
whether ABr = Cr. This algorithm takes only O(n?) FLOPs to evaluate. Its false negative rate = 0,
and we will show that its false positive rate < %

Claim 1. The false positive rate = Pr(AB— C)r= 0N AB # C] < 1.
Proof. We can observe that

Pr[(AB — C)r = 0N AB # C]

= Pr[all non-zero entries in D := AB — C cancel each other]

<Pr r; = 1 ’ ZTkD(,k) = —D(,])
Py

Following the same reasoning, we can show that the false positive rate can be improved to be < %
by drawing r € [k]" i.i.d. instead.

4 Polynomial identity testing

Problem Given P(z), Q(z), R(x) € R[z] polynomials of degree d, d, 2d, respectively. We ask
whether P(z)Q(x) = R(x). More generally, we ask whether P(z) = Q(z), deg(P) = deg(Q) = d.

Naive approach We can observe that the polynomial P(z) — Q(x) is of degree at most d, and
therefore has at most d roots. By picking random elements = € [O(d)], we can check whether P(z) —
Q(x) = 0. This method has 0 false negative rate and constant false positive rate % when picking
z € [cd]. However, the direct evaluation of P(x) and Q(x) involves storing numbers as large as O(d?)
which takes O(dlogd) space.

Fingerprinting We can improve the space cost by projecting P(z) — Q(z) into a finite field F),
for some prime p > 2d. Then the polynomial identity test on random z € F), has false positive rate
= % < % In addition, the Schwartz-Zippel Lemma | ;] suggests that the same holds for
multivariate polynomials. That is, for deg(P(z1,22,...)) = d, let p > 2d. Choosing z1,x2,--- € F)
randomly, we have Pr[P(z1,z2,...) =0 | P(z) # 0] < %'

5 String testing

Suppose Alice has string a = ag,...,a,—1 € {0,1}", and Bob has string b = by, ...,b,—1 € {0,1}".
Suppose they would like to test whether a = b by fingerprinting. Alice then needs to send her choice
of hash function h and h(a) so that Bob can check whether h(a) = h(b).

How large does Alice’s message (h(a),h) need to be?

5.1 String testing via Rabin-Karp hashing

We can test whether a = b by treating {ai}?;gl, {bi}?;ol as coefficients of polynomials.
Using the techniques described for polynomial identity testing, we can fix p > 2n and choose
z €{0,...,p— 1} at random and evaluate

n—1 n—1
h(a) = Z a;z’ mod p z Z biz' mod p = h(b).
i=0 i=0

This test has a false positive rate of at most %, since there is at most this chance of randomly
choosing = € {0,...,p — 1} as one of the n roots of 3.7 a;a’.
most %

For Alice and Bob to do their fingerprinting test, Alice must send only O(logp) ~ O(logn) bits
for h(a) and her random choice of z € {0,...,p — 1}.

Taking p > n? gives failure rate at

5.1.1 An application of Rabin-Karp Hashing: Pattern Matching

Consider the pattern matching problem, where we are given two strings a = ai1,...,a, and b =
b1,...b, for m < n, and we would like to find all indices ¢ such that ai,...,am = b;,...,birm—1, i.e.
find all the locations where a occurs as a substring in b. Naively, there is an O(mn) algorithm that
solves this problem. There is a deterministic O(m + n) ~ O(n) algorithm that solves this problem
(KMP algorithm), but it is complicated! We can solve this problem in O(n) time with high probability
using Rabin-Karp hashing.

We choose h to be

m

h(a) = Zajmm_j mod p.
j=1

Then, given h(by,...,by), there is a simple formula for evaluating h(bs, ..., hpt2):

m—+1
h(ba, . hng2) = > ba™ 1 mod p = zh(by, ... ,bp) + bmy1 — biz™ ' mod p.
j=2
More generally, given h(a) and h(bi—1,...,bi—14m) for i € {2,...,n — m}, we can compute

h(bi,...,biym) in O(1) time. This gives an O(m + n) algorithm for the pattern matching problem.
The expected number of false matches is at most n - %, using the union bound over all length m
substrings of b. Taking p > n? gives failure rate at most 1/n.
Above is a Monte-Carlo algorithm that runs in O(m + n) time. We can make it a Las Vegas
algorithm by doing an exhaustive check on each substring of b that tests positively as matching a.
This would take O(n + am) time, where « is the number of occurrences of a in b.

5.2 String testing via primality testing

Consider again the problem of testing equality of strings a = ag, ...,an,—1 € {0,1}" and b = by, ..., b1
{0,1}" using fingerprinting techniques. Using Rabin-Karp, we chose h(a) = Z?;(} a;x' mod p for
p >> n fixed and x € F,, chosen at random.

Alternatively, we can fix x and choose p at random. This is analogous to treating a and b as bit
strings that represent integers) . a; 2%, > b;2¢.

Clearly, the false positive rate is 0, but for a # b, what is the probability that a — b == 0 mod p
for a random choice of p? We have a false positive iff p|(a — b), where (a —b) is an (n+ 1) bit number.

Since a — b < 271 it has at most O(n) prime factors, as a prime factor is at least 2.

The density of prime numbers is O(1/logn). Therefore, if we choose p a random prime such that
1 < p < O(n%logn), then there will be at most n? primes to choose from. Only n of them happen to
divide (a —b). This gives false positive rate at most 1/n. For Alice and Bob to do their fingerprinting
test, Alice only needs O(log k) ~ O(log n) bits to share her fingerprint and her random choice of prime
p.

How do we choose a random prime? If we can primality test, we can do O(logn) queries until
we find one, with high probability. The Agarwal-Biswas algorithm uses the fact that for N a positive
integer

(zN +1) == (241" mod N <= N is prime.
Instead of evaluating the above (mod N), they evaluate it (mod @) for some random choice of Q). The

details are outside the scope of this lecture. The primality test succeeds with high probability and
can be executed in polylog time.

References

[Zip79] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In: Lecture Notes in Com-
puter Science (1979), pp. 216-226. poI: 10.1007/3-540-09519-5_73.

[Sch80] Jack Schwartz. “Fast probabilistic algorithms for verification of polynomial identities”. In:
Journal of the ACM (1980), pp. 701-717. DOI: 10.1145/322217 .322225.

[Bro93] Andrei Z. Broder. “Some applications of Rabin’s fingerprinting method”. In: Sequences
II: Methods in Communications, Security, and Computer Science. Springer-Verlag, 1993,
pp. 143-152.

https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1145/322217.322225

	Overview: fingerprinting
	An intuitive way: fingerprinting with hash function
	Matrix equality testing
	Polynomial identity testing
	String testing
	String testing via Rabin-Karp hashing
	An application of Rabin-Karp Hashing: Pattern Matching

	String testing via primality testing

