CS 388R: Randomized Algorithms, Fall 2019 October 10

Lecture 13: Bipartite Matching on regular graphs
Prof. Eric Price Scribe: George Lu, Shailesh Mani Pandey
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Notation and Definitions

Definition 1 (Matching). Given an undirected graph G = (V, E), we say a subset of edges M C E
is a matching if every vertex in 'V has at most degree 1 in M - in other words, no two edges share
an endpoint.

Definition 2 (Maximum Matching). Given an undirected graph G = (V, E), a mazimum matching
M is a matching of maximum size. Thus for any other matching M', |M| > |M’|.

Definition 3 (Perfect Matching). A matching is perfect if every vertex has degree exactly 1 in M.
Definition 4 (d-regular Graph). We say a graph is d-reqular if every vertex has degree d

Definition 5 (Bipartite Graph). We say a graph is bipartite if there is a partitioning of vertices
of a graph, V', into disjoint subsets A, B such that AUB =V and all edges (u,v) € E have exactly
1 endpoint in A and 1 in B. We will notate such a bipartite graph as (A+ B, E).

Definition 6 (Neighborhood). For any vertez, u, in a bipartite graph, the neighborhood of u, N (u)

is the set of all vertices v such that (u,v) € E. For a set of vertices U, N(U) = |J N(u).
uelU

In this lecture, we’ll be primarily concerned with the case of finding perfect matchings in d-regular
bipartite graphs.

Definition 7 (s-t Flow). We say a mapping from f: E — R is an s—t flow on a directed weighted
graph G iff

® Vv e V\{S7 t} Z(u,v)eE f((uv U)) = Z(v,w)eE f((’l), w))

e Ve c FO< f(E) <w(E)

¢ 0< Y uyer H(5:0) = Yumer F(09) = S ner F0D) = Spuyer £((Ew)

This last quantity is the flow of the graph.

Definition 8 (s—t Cut). An s-t cut of a directed, weighted graph is a partition S, T of the vertices
such that s € S andt € T. We say the size of cut is

Z w(u,v)

(u,v)eEN(SXT)

2 Theory

Theorem 9 (Min-Cut Max-Flow). The minimum s —t cut of a graph is equal to the mazimum
s —t flow.

Proof. Check your favorite undergrad algorithms textbook |

Theorem 10 (Hall’s Marriage Theorem). A bipartite graph G = (A+ B, E) has a perfect matching
iff VS C A, S| < IN(9)].

Proof. If there is a perfect matching, then clearly V.S C A |S| < |N(S)|, as the edges matched to S
are disjoint and a subset of N(S5).

To complete the proof, we will show the inverse of the above statement - If there is no perfect
matching, then 35 C A such that |S| > |N(S)|. Let’s consider the following graph G’ on {s,t} U
A+ B. There are direct weight 1 edges from s to every element of A, and from every element of B
to T'. Finally, there is a directed edge of infinite (or arbitrarily large) capacity from a € A to b € B
iff (a,b) was an edge in G.

Lemma 11. The mazimum s —t flow of G’ is equal to the mazximum matching on G

Proof. Consider any matching M on G. We can define a flow, f, of size |M| on G’ as f((s,a)) =1,
f((a,b)) =1, and f((b,t)) = 1iff 3(a,b) € M. f is 0 otherwise. It is easy to verify that this is
indeed size |M| and satisfies flow conservation

Conversely, we consider a max flow of G of size F'. First, we note the existence of integral max flows
when G’ has integral edges (the proof of this is through a simple examination of the execution and
correctness of the Ford-Fulkerson algorithm), so we will restrict our consideration to such flows. We
consider the set of edges S going between A and B which have positive flow. Since S’s endpoint in
A and B has capacity 1, these edges can only exactly have 1 flow through them. Similarly, by flow
conservation on their endpoints, no two saturated edges can share an endpoint without violating
flow conservation, so we realize S is a matching of size F'. |

Thus, by Min-Cut Max-Flow, we conclude that since there is no perfect matching, there must be
an s —t cut (S,T) of G’ of size < |M| < |A|. We can observe that the size of any s — ¢ cut in this
graph is equal to |[TNA|+|SNB|4+ oo |[N(SNA)N (T N B)|. Clearly we can’t cut any infinite
capacity edges, so this cut is actually equal to [TTNA|+|SNB| = |BNS|+(|A|—]ANS|). However,
since we know that N(SNA)N(TNB) =0, that tellsus N(SNA)=N(SNA)NSNB C SNB, so
IN(SNA)| < |SNB|. We also know that the cut has size less than |A|, which means |[BNS| < |SNA|.
Combining these two inequalities, we obtain that |[N(S N A)| < |S N A|, thus providing a witness
for Hall’s marriage theorem.

Lemma 12. Vd > 0, d-regular bipartite graphs have perfect matchings.

Proof. There are total d - |S| edges from any set S C A to N(S). Also, total number of edges into
N(S)is d-|N(9)|.

= dIN(5)| = d|S| = [N(5)| = |5 u

3 Algorithms

3.1 Previous Results

e Ford Fulkerson - O(mF) to find max flow. m € O(nd), F € O(n), so O(n?d)
e Hungarian Algorithm - O(n?), works for weighted graphs.
e Hopcroft-Karp O(m+/n) = O(n'd)

The algorithms listed above work in general bipartite graphs, but we will show below that perfor-
mance can be significantly improved when the graphs are d-regular.

3.2 Gabow-Kariv ’82

This algorithm only works when d is a power of 2, but runs in O(m) = O(nd) time. Idea - we find
an Eulerian tour of G in O(m) time, then remove m/2 edges which go from B to A in the tour,
producing a %—regular graph. The running time per recursive call is geometric and converges.

3.3 Goel-Kapralov-Khanna 06
This is a randomized algorithm that finds a perfect matching for all d > 0, and runs in expected
O(nlogn) time.

This is essentially a randomized version of the Ford Fulkerson algorithm applied to the flow con-
struction described in our proof of Hall’s Marriage Theorem.

To be more specific, we repeatedly find a path from the source, s, to the sink, ¢, by a random walk
and augment along that path. In finding a random path, we never go back to s and always go to t
whenever possible.

3.3.1 Runtime Analysis

Lemma 13. For d-regular graphs, if k vertices are still unmatched, then E[time to match next
vertez] S 7.

Proof. For graph G’ on {s,t} UX +Y, let X,,, C X, Y,, CY be the set of matched vertices, and
Xu C X, Y, CY be the set of unmatched vertices. We write M (x) = y if matches y.

Vv € G, we define b(v) = expected number of back edges in the random walk from v to sink, ¢.

_ 0 yey,
b(y)‘{wb(M(y)) i

Vi € Xy,d-b(z) =) by
yeN ()
Vo € X, (d—1) - b(z) = > b(y)
yEN (z)—{M ()}

= D> bly) = b(M(x))

YyEN(z)

= > bly)— (1+b())

yeN(z)

= d-b(x)= > by

yEN ()

— > d-blx)=>)_d-bly)— M|

VreX yeY
=d- (\M! +) b(a:)) — | M|
rEXm
= Y d-b(z)=(d—1)|M]|
VreXy,
We can now write b(s) as:
ey =1 3 by = =D
r€EXy

=1 (n—k) _

d k -

N =13

Hence, E[time to match next vertex] = E[length of path from s to t] <3+2-b(s) <

e‘v\z

1
Using this lemma, E[time to match all vertices] = > % =n- H, =~ nlogn.
i=n

4 Intro to Online Bipartite Matching

The graph is not known in advance and vertices appear one at a time. A matching can be chosen
for a vertex as it appears, and that matching can not be revoked. The resultant may not be regular.
One scenario where this occurs is matching users to different advertisers on a website.

The greedy algorithm gets “maximal” matching, which is at least half the size of the maximum
matching. As it turns out, any deterministic algorithm or even choosing a random edge for every
vertex doesn’t help much. However, there exists a randomized algorithm by Karp-Vazirani-Vazirani
(KVV ’90) that gives a matching which is approximately (1 — f) times as good as the maximum
matching.

