
CS 388R: Randomized Algorithms, Fall 2019 October 10

Lecture 13: Bipartite Matching on regular graphs

Prof. Eric Price Scribe: George Lu, Shailesh Mani Pandey

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Notation and Definitions

Definition 1 (Matching). Given an undirected graph G = (V,E), we say a subset of edges M ⊆ E
is a matching if every vertex in V has at most degree 1 in M - in other words, no two edges share
an endpoint.

Definition 2 (Maximum Matching). Given an undirected graph G = (V,E), a maximum matching
M is a matching of maximum size. Thus for any other matching M ′, |M | > |M ′|.

Definition 3 (Perfect Matching). A matching is perfect if every vertex has degree exactly 1 in M .

Definition 4 (d-regular Graph). We say a graph is d-regular if every vertex has degree d

Definition 5 (Bipartite Graph). We say a graph is bipartite if there is a partitioning of vertices
of a graph, V , into disjoint subsets A,B such that A∪B = V and all edges (u, v) ∈ E have exactly
1 endpoint in A and 1 in B. We will notate such a bipartite graph as (A + B,E).

Definition 6 (Neighborhood). For any vertex, u, in a bipartite graph, the neighborhood of u, N(u)
is the set of all vertices v such that (u, v) ∈ E. For a set of vertices U , N(U) =

⋃
u∈U

N(u).

In this lecture, we’ll be primarily concerned with the case of finding perfect matchings in d-regular
bipartite graphs.

Definition 7 (s-t Flow). We say a mapping from f : E → R is an s− t flow on a directed weighted
graph G iff

• ∀v ∈ V \{s, t}
∑

(u,v)∈E f((u, v)) =
∑

(v,w)∈E f((v, w))

• ∀e ∈ E0 ≤ f(E) ≤ w(E)

• 0 ≤
∑

(s,w)∈E f((s, w))−
∑

(u,s)∈E f((u, s)) =
∑

(u,t)∈E f((u, t))−
∑

(t,w)∈E f((t, w))

This last quantity is the flow of the graph.

Definition 8 (s− t Cut). An s-t cut of a directed, weighted graph is a partition S, T of the vertices
such that s ∈ S and t ∈ T . We say the size of cut is∑

(u,v)∈E∩(S×T)

w(u, v)

1

2 Theory

Theorem 9 (Min-Cut Max-Flow). The minimum s − t cut of a graph is equal to the maximum
s− t flow.

Proof. Check your favorite undergrad algorithms textbook �

Theorem 10 (Hall’s Marriage Theorem). A bipartite graph G = (A+B,E) has a perfect matching
iff ∀S ⊆ A, |S| ≤ |N(S)|.

Proof. If there is a perfect matching, then clearly ∀S ⊆ A |S| ≤ |N(S)|, as the edges matched to S
are disjoint and a subset of N(S).

To complete the proof, we will show the inverse of the above statement - If there is no perfect
matching, then ∃S ⊆ A such that |S| > |N(S)|. Let’s consider the following graph G′ on {s, t} ∪
A+B. There are direct weight 1 edges from s to every element of A, and from every element of B
to T . Finally, there is a directed edge of infinite (or arbitrarily large) capacity from a ∈ A to b ∈ B
iff (a, b) was an edge in G.

Lemma 11. The maximum s− t flow of G′ is equal to the maximum matching on G

Proof. Consider any matching M on G. We can define a flow, f , of size |M | on G′ as f((s, a)) = 1,
f((a, b)) = 1, and f((b, t)) = 1 iff ∃(a, b) ∈ M . f is 0 otherwise. It is easy to verify that this is
indeed size |M | and satisfies flow conservation

Conversely, we consider a max flow of G of size F . First, we note the existence of integral max flows
when G′ has integral edges (the proof of this is through a simple examination of the execution and
correctness of the Ford-Fulkerson algorithm), so we will restrict our consideration to such flows. We
consider the set of edges S going between A and B which have positive flow. Since S’s endpoint in
A and B has capacity 1, these edges can only exactly have 1 flow through them. Similarly, by flow
conservation on their endpoints, no two saturated edges can share an endpoint without violating
flow conservation, so we realize S is a matching of size F . �

Thus, by Min-Cut Max-Flow, we conclude that since there is no perfect matching, there must be
an s− t cut (S, T) of G′ of size ≤ |M | < |A|. We can observe that the size of any s− t cut in this
graph is equal to |T ∩ A| + |S ∩ B| +∞ · |N(S ∩ A) ∩ (T ∩ B)|. Clearly we can’t cut any infinite
capacity edges, so this cut is actually equal to |T ∩A|+ |S∩B| = |B∩S|+(|A|− |A∩S|). However,
since we know that N(S ∩A)∩ (T ∩B) = ∅, that tells us N(S ∩A) = N(S ∩A)∩S ∩B ⊆ S ∩B, so
|N(S∩A)| ≤ |S∩B|. We also know that the cut has size less than |A|, which means |B∩S| < |S∩A|.
Combining these two inequalities, we obtain that |N(S ∩ A)| < |S ∩ A|, thus providing a witness
for Hall’s marriage theorem.

�

Lemma 12. ∀d > 0, d-regular bipartite graphs have perfect matchings.

Proof. There are total d · |S| edges from any set S ⊆ A to N(S). Also, total number of edges into
N(S) is d · |N(S)|.

2

=⇒ d|N(S)| ≥ d|S| =⇒ |N(S)| ≥ |S| �

3 Algorithms

3.1 Previous Results

• Ford Fulkerson - O(mF) to find max flow. m ∈ O(nd), F ∈ O(n), so O(n2d)

• Hungarian Algorithm - O(n3), works for weighted graphs.

• Hopcroft-Karp O(m
√
n) = O(n1.5d)

The algorithms listed above work in general bipartite graphs, but we will show below that perfor-
mance can be significantly improved when the graphs are d-regular.

3.2 Gabow-Kariv ’82

This algorithm only works when d is a power of 2, but runs in O(m) = O(nd) time. Idea - we find
an Eulerian tour of G in O(m) time, then remove m/2 edges which go from B to A in the tour,
producing a d

2 -regular graph. The running time per recursive call is geometric and converges.

3.3 Goel-Kapralov-Khanna ’06

This is a randomized algorithm that finds a perfect matching for all d > 0, and runs in expected
O(n log n) time.

This is essentially a randomized version of the Ford Fulkerson algorithm applied to the flow con-
struction described in our proof of Hall’s Marriage Theorem.

To be more specific, we repeatedly find a path from the source, s, to the sink, t, by a random walk
and augment along that path. In finding a random path, we never go back to s and always go to t
whenever possible.

3.3.1 Runtime Analysis

Lemma 13. For d-regular graphs, if k vertices are still unmatched, then E[time to match next
vertex] . n

k .

Proof. For graph G′ on {s, t} ∪X + Y , let Xm ⊆ X, Ym ⊆ Y be the set of matched vertices, and
Xu ⊆ X, Yu ⊆ Y be the set of unmatched vertices. We write M(x) = y if x matches y.

∀v ∈ G′, we define b(v) = expected number of back edges in the random walk from v to sink, t.

b(y) =

{
0 y ∈ Yu

1 + b(M(y)) y ∈ Ym

3

∀x ∈ Xu, d · b(x) =
∑

y∈N(x)

b(y)

∀x ∈ Xm, (d− 1) · b(x) =
∑

y∈N(x)−{M(x)}

b(y)

=
∑

y∈N(x)

b(y)− b(M(x))

=
∑

y∈N(x)

b(y)− (1 + b(x))

=⇒ d · b(x) =
∑

y∈N(x)

b(y)− 1

=⇒
∑
∀x∈X

d · b(x) =
∑
y∈Y

d · b(y)− |M |

= d ·

(
|M |+

∑
x∈Xm

b(x)

)
− |M |

=⇒
∑
∀x∈Xu

d · b(x) = (d− 1) · |M |

We can now write b(s) as:

b(s) =
1

k

∑
x∈Xu

b(x) =
(d− 1)

d · k
|M |

=
(d− 1)

d
· (n− k)

k
≤ n

k

Hence, E[time to match next vertex] = E[length of path from s to t] ≤ 3 + 2 · b(s) . n
k . �

Using this lemma, E[time to match all vertices] =
1∑

i=n

n
i = n ·Hn ≈ n log n.

4 Intro to Online Bipartite Matching

The graph is not known in advance and vertices appear one at a time. A matching can be chosen
for a vertex as it appears, and that matching can not be revoked. The resultant may not be regular.
One scenario where this occurs is matching users to different advertisers on a website.

The greedy algorithm gets “maximal” matching, which is at least half the size of the maximum
matching. As it turns out, any deterministic algorithm or even choosing a random edge for every
vertex doesn’t help much. However, there exists a randomized algorithm by Karp-Vazirani-Vazirani
(KVV ’90) that gives a matching which is approximately

(
1− 1

e

)
times as good as the maximum

matching.

4

