CS 388R: Randomized Algorithms, Fall 2019 October 17th

Lecture 15: K-Hamiltonian Path; Sampling; median finding;
Prof. Eric Price Scribe: Devvrit, Feichi Hu
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 K-Hamiltonian Path

Question: Randomized algorithm for finding a Hamiltonian path of length k in a given graph G.

1. Randomly k-color the graph.

2. Run deterministic algorithm to find the shortest path that visits k distinct colors. Using
dynamic programming. [STATE = where you end up & Which colors have seen so far.] Can
be done in n? - 2% time, for n steps and 2* states.

3. Repeat log(§)e” times.

Analysis: We only care about coloring true path/set of k nodes. The chance of having a correct
Hamiltonian path of length k(correct coloring) is

of valid coloring of the set k! 1

k

of total coloring Tk T e

If we repeat log(%)ek times, we’ll get the correct result with high probability (1 —¢) The total time
taken is:
O(n?- 2O(k))

2 Sampling
Question: There is some S C SPACE(U). We have an oracle to query if z € S for Vz. Goal:

estimate Vol(5).

Simple algorithm: Pick x1,x9, - , 2y € U uniformly, and query if x; € S. Let Z; be the indicator
event whether x; € S. Then,

#lieinS _ Vol(S)
picked Vol(U) 7

There are many factors that p can depend upon. For example, it’ll depend on how large S and
U are. One could imagine the above process of sampling and estimating in 2-dimension. In high
dimensional space, it’ll look as estimating the volume of some d—dimensional polytope.

Question How many samples are needed to learn p with estimator satisfying p € (1 &+ €)p with
probability 1 — §. That is, an (e, d) approximation.

One could recollect that we're dealing with a similar event we have studied before - of tossing a
coin and estimating probability of getting a head. Just for the sake of completeness, we’ll derive
the result here again. Let’s assume we sample n points x1, 29, -+ ,x,. Then, we know that the
expected number of points lying in S will be np. That is,

n

Then,

n 7 -
P HZZT;Z —p‘ >pe] =P ZZZ- — np| > npe|
=1
162
<2 3™

Thus, in order for this probability to be less than §, we get n > 1% log(%).

One might be tempted to sample 7 elements such that Z?Zl Z; = 1% log(g), and estimate the

probability p as p = %Zl But we can’t be sure that this is indeed a correct estimation.
Consider the following picture.

27

3
S0 PEN E

Where (i = 6% log(%), and the red line represents the actual Y Z; vs n curve. For > Z; = [i, the
actual n value is n = [i/p, whereas we get the number of samples where »_ Z; = [i as 1. Hence, we
estimate

—
== n e

The previous result tell us about the accuracy of > Z;, that is, the value of) Z; will be within
(1 £ ¢€) actual mean fi (w.h.p.). What we moreover need is that the number of samples 7 is within
the range as specified above. We’ll prove that it’s indeed in this range with high probability.

Consider the number of samples n’ = p(lﬂ— ok For this, the actual mean is p = 0 A We need to

1—e¢)
show that P Zzil Z; < ﬂ} < 4.

2
e
3P

P

e

IN

C i
Z 1
St

- (1i€) log(%)

e
4]

IN

Thus, with very high probability 7 will be less than n’ = p(iﬂ)' Similarly, we can prove for %

1—e
[ﬁe, i} Thus, we guarantee that sampling 7 elements
such that E?:l Z; = E% log(%) elements gives a probability estimation p = # satisfying p €

p(1 £ €) with high probability.

and hence with high probability n € %

3 Median Finding

Question: Given zy, ..., x,, find the median z;.

1. Sort & output median — O(nlogn).

2. Quick select, modified quick sort T'(n) = O(n) + T'(2%) — O(n) time and # of comparisons
in expectation. Still has () chance of ©(nk) work.

3. Fancy deterministic algorithm: split ¢ sets of 5 elements each, apply the same divide and

conquer method. Take the median of medians.

)+ T(50) = O(n)

T(n)=0(n)+T(0

Randomized Algorithm in O(n) w.h.p.:

Sample y1,y2, ..., ys from X[y; = z; for j € [n] uniformly at random]. Sort in O(slogs). We want
to say
Ys—k < median x < Ystk

w.h.p for k = O(1/Slogn).
Prlys_x > median x]=Pr[at least 5 + k elements choices of y < median x|
Using indicator Z; = (y; < median X)

1

E[Y Z]= g

3

2

Pr(> 7 > §+k] <e
Using the value &k = O(v/Slogn), we get the above probability being very low.

Question: How do we use this algorithm?

logn
2

Optionl: Use ys for quick select. Rank of ys Is 5£0(n) w.h.p.

Option2: Scan through z, and put them in one of the following groups: (x < yr), (z € [yL,yH]),
or (z > yp)) for (L, H) = (£ —k,5+k). Sort z € [yr, yu) and output the (4 —|[z < yz]|)" element.

of comparisons < O(slogs) < sort y
+ < 2n <+ partition
+O(mlogm)

where m = |(z|z € [yr,ym])|- Notice that the 2n term is actually 1.5n as for almost half of the
elements, we only compare with yy.
Consider the following equation, which holds true for any fraction f € [0, 1]

Yfs—k < T(fn) < Yfsk Viractions f

What we want are the number of such = such that

(@|z € [ys—k,ys+k])

This only happens for z ¢, with f-s > %s — 2k

1 2k 1 2k

:> :7—7’57 _
f=5=5 g+

Therefore, (mlog(m)) < % n = 0(471\/@) — O(n@)

S S

Pick logn << s << &. —> # of comparisons is 1.5n + O(n)
s=n3 = 15n+ O(n%bg")

