CS 388R: Randomized Algorithms, Fall 2019 October 22nd, 2019

Lecture 16: Concentration Inequalities
Prof. Eric Price Scribe: Zihang He, Sabee Grewal
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1 Overview

In the last lecture we learned some concentration inequalities. . ..

e Markov’s inequality: if X >0, P[X >t] < E[tX];

e Chebyshev’s inequality: Let p = E[X], P[|X — u| > ] = P[(X — p)? > 3] < BIX )],

e Higher moments: for any even k, P[(X — p)* > t¥] < E[(Xtik_“)k}

In this lecture we will learn more about concentration inequalities and prove the additive form of
the Chernoff bound.

2 Moment Generating Functions

2.1 Gaussian refresher

Gaussian N (0,1): p(z) = \/%6*12/2. Let X ~ N(0,1), then

Y

k!

E[X?’|=1, E[X"= W = (

O(k))*/2.

With Chebyshev’s inequality, we get a bound of P[(X — u)? > %] < t% With the inequality for the

k-th moment (for even k), we get a bound of ck:#. To get the tightest bound, we want to find an

even k which minimizes % (where t is known). Note that as k — k + 1, the numerator grows by

~ vk and the denominator grows by ~ t, so we want k ~ t2.

2.2 Moment generating functions

The moment generating function (mgf) is defined as

() = E[e?X 1],



By Taylor expansion, the mgf can be written as
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Note, by the linearity of expectation, we see that E[A(X —x)] = 0 and that term disappears from the
Taylor expansion. Additionally, as A grows, ¢(\) grows by a weighted combination of all moments.
For larger A\, ¢(A) will be weighted more towards the larger moments. We get a new bound for
P[X — p > t] by applying Markov’s inequality to the mgf:
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This bound is true for all mgfs. Now we’ll consider mgfs of Gaussian random variables. First, let’s
consider the mgf of X ~ N(0,1):
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Now, let’s consider the more general Gaussian distribution X ~ N(0, 2):

E[X?| =02 E[X" = (0(k)c})*

The mgf of X ~ N(0,0?) is
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Applying this mgf to the bound we found above, we get:

(By completing square, )‘22"2 — M =3 —L1)2 - ﬁ)



3 Subgaussian, Subexponential, and Subgamma Random Vari-
ables

3.1 Subgaussian random variables

Definition 1. A random variable X is subgaussian with “variance prozy” (a.k.a. "parameter”) o?
if

2252

1. Y\ BlMX 1] < e

2
2. P[X — pul > ] < 2 27

3. E[|X — plF] < k2o*

All three definitions above are equivalent up to constant factors in o.

Lemma 2. Any variable X bounded in [a,a + b] is subgaussian with variance prozy (3)2.

Proof. You will be asked to prove this on the problem set! O

Lemma 3. If X1, X5 are independent subgaussian with variance proxies 0%,0%, X1+ Xo s sub-
gaussian with variance proxry U% + U%.

Proof. Assume p = 0.
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Note, X € subgaussian(c?) := X is subgaussian with variance proxy o2.
Let’s consider coin flip example: sum of n coin flips x; € {0,1}.X; € subgaussian(%)7 so Y X; €

subgaussian (7 ):
2t2

P Xizp+t]<e n.

This gives us the additive Chernoff bound!

3.2 Subexponential random variables

Z; = # flips until heads, then

1
PZi=f=, E[Z]=2

Question: how do we bound P[>"" | Z; > 2n +t]?

First, we find the mgf of Z;: ¢(\) = E[e*?72)] =372, e;e_z’\




Definition 4. A random X is subexponential with ”parameter” o2 if
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1.VYAst [N <L EMH) <2
2. P[X — p| > 1] <2 %

3. EB[|X — p|¥] < kkok
Example of subexponentials:

o Pli] =5
e p(z)=e"Vx >0
e X?if X is subgaussian.

Definition 5. A random X is subgamma with “parameter” (o2, c) if

1LVAst N <t B <e™
2. PlIX —pu| >t <2 max(e_zaj,e_%)

Next lecture we”ll continue to explore subgamma and subexponential random variables.



