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1 Overview

In the last lecture we learned some concentration inequalities. . . .

• Markov’s inequality: if X ≥ 0, P[X ≥ t] ≤ E[X]
t ;

• Chebyshev’s inequality: Let µ = E[X], P[|X − µ| ≥ t] = P[(X − µ)2 ≥ t2] ≤ E[(X−µ)2]
t2

;

• Higher moments: for any even k, P[(X − µ)k ≥ tk] ≤ E[(X−µ)k]
tk

.

In this lecture we will learn more about concentration inequalities and prove the additive form of
the Chernoff bound.

2 Moment Generating Functions

2.1 Gaussian refresher

Gaussian N (0, 1): p(x) = 1√
2π
e−x

2/2. Let X ∼ N (0, 1), then

E[X2] = 1, E[Xk] =
k!

2k/2(k/2)!
= (Θ(k))k/2.

With Chebyshev’s inequality, we get a bound of P[(X −µ)2 ≥ t2] ≤ 1
t2

. With the inequality for the

k-th moment (for even k), we get a bound of ck
k/2

tk
. To get the tightest bound, we want to find an

even k which minimizes kk/2

tk
(where t is known). Note that as k −→ k + 1, the numerator grows by

∼
√
k and the denominator grows by ∼ t, so we want k ≈ t2.

2.2 Moment generating functions

The moment generating function (mgf) is defined as

φ(λ) := E[eλ(X−µ)].
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By Taylor expansion, the mgf can be written as

φ(λ) = E[1 + λ(X − µ) +
λ2

2
(X − µ)2 +

λ3

3!
(X − µ)3 + · · ·+ λk

k!
(X − µ)k].

Note, by the linearity of expectation, we see that E[λ(X−µ)] = 0 and that term disappears from the
Taylor expansion. Additionally, as λ grows, φ(λ) grows by a weighted combination of all moments.
For larger λ, φ(λ) will be weighted more towards the larger moments. We get a new bound for
P[X − µ ≥ t] by applying Markov’s inequality to the mgf:

P[X − µ ≥ t] = P[eλ(X−µ) ≥ eλt] ≤ min
λ≥0

φ(λ)

eλt
.

This bound is true for all mgfs. Now we’ll consider mgfs of Gaussian random variables. First, let’s
consider the mgf of X ∼ N (0, 1):

φ(λ) = E[eλ(X−µ)] =

∫ ∞
−∞

1√
2π
e−

x2

2 eλxdx

=

∫ ∞
−∞

1√
2π
e−

(x−λ)2
2 e

λ2

2 dx

= e
λ2

2

∫ ∞
−∞

1√
2π
e−

(x−λ)2
2 dx

(
1√
2π
e−

(x−λ)2
2 is the pdf of N(λ, 1)

)
= e

λ2

2 .

Now, let’s consider the more general Gaussian distribution X ∼ N (0, σ2):

E[X2] = σ2, E[Xk] = (Θ(k)σ2)k/2.

The mgf of X ∼ N (0, σ2) is

φ(λ) = E[eλ(X−µ)] =

∫ ∞
−∞

1√
2πσ2

e−
x2

2σ2 eλxdx

=

∫ ∞
−∞

1√
2πσ2

e−
(x−λσ2)2

2σ2 e
λ2σ2

2 dx

= e
λ2σ2

2

∫ ∞
−∞

1√
2πσ2

e−
(x−λσ2)2

2σ2 dx

(
1√

2πσ2
e−

(x−λσ2)2
2 is the pdf of N(λσ2, σ2)

)
= e

λ2σ2

2 .

Applying this mgf to the bound we found above, we get:

P[X − µ ≥ t] ≤ min
λ≥0

φ(λ)

eλt
= min

λ≥0
e
λ2σ2

2
−λt = e−

t2

2σ2(
By completing square, λ2σ2

2 − λt = 1
2(λσ − t

σ )2 − t2

2σ2

)
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3 Subgaussian, Subexponential, and Subgamma Random Vari-
ables

3.1 Subgaussian random variables

Definition 1. A random variable X is subgaussian with ”variance proxy” (a.k.a. ”parameter”) σ2

if

1. ∀λ,E[eλ(X−µ)] ≤ e
λ2σ2

2

2. P[|X − µ| ≥ t] ≤ 2e−
t2

2σ2

3. E[|X − µ|k] ≤ k
k
2 σk

All three definitions above are equivalent up to constant factors in σ.

Lemma 2. Any variable X bounded in [a, a+ b] is subgaussian with variance proxy ( b2)2.

Proof. You will be asked to prove this on the problem set!

Lemma 3. If X1, X2 are independent subgaussian with variance proxies σ21, σ
2
2, X1 + X2 is sub-

gaussian with variance proxy σ21 + σ22.

Proof. Assume µ = 0.

E[eλ(X1+X2)] = E[eλ(X1)eλ(X2)] = E[eλ(X1)]E[eλ(X2)] ≤ e
λ2σ21

2 e
λ2σ22

2 = e
λ2(σ21+σ

2
2)

2

Note, X ∈ subgaussian(σ2) := X is subgaussian with variance proxy σ2.

Let’s consider coin flip example: sum of n coin flips xi ∈ {0, 1}.Xi ∈ subgaussian(14), so
∑
Xi ∈

subgaussian (n4 ):

P[
∑

Xi ≥ µ+ t] ≤ e−
2t2

n .

This gives us the additive Chernoff bound!

3.2 Subexponential random variables

Zi = # flips until heads, then

P[Zi = t] =
1

2t
, E[Zi] = 2.

Question: how do we bound P[
∑n

i=1 Zi ≥ 2n+ t]?

First, we find the mgf of Zi: φ(λ) = E[eλ(Z−2)] =
∑∞

i=1
eλi

2i
e−2λ
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Definition 4. A random X is subexponential with ”parameter” σ2 if

1. ∀λ s.t. |λ| ≤ 1
σ , E[eλ(X−µ)] ≤ e

λ2σ2

2

2. P[|X − µ| ≥ t] ≤ 2e−
t
2σ

3. E[|X − µ|k] ≤ kkσk

Example of subexponentials:

• P[i] = 1
2i

• p(x) = e−x∀x ≥ 0

• X2 if X is subgaussian.

Definition 5. A random X is subgamma with ”parameter” (σ2, c) if

1. ∀λ s.t. |λ| ≤ 1
c , E[eλ(X−µ)] ≤ e

λ2σ2

2

2. P[|X − µ| ≥ t] ≤ 2 max(e−
t2

2σ2 , e−
t
2σ )

Next lecture we”ll continue to explore subgamma and subexponential random variables.
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