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Lecture 17: Subgamma variables and Johnson-Lindenstrauss
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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Subgamma Variables

Definition 1. A random variable X is subgamma with variance proxy σ2 and exponential scale c
if:

(I) E
[
eλ(X−E[X])

]
≤ e

λ2σ2

2 ∀ |λ| ≤ 1

c

This definition implies:

(II)

P
[
|X − E[X]| ≥ t

]
≤ 2 ·max

(
e−

t2

2σ2 , e−
2
2c

)
.

(III) With probability ≥ 1− δ,

|X − E[X]| ≤

√
2σ2 ln

(
2

δ

)
+ 2c ln

(
2

δ

)
.

Either of the latter two properties also implies the definition (I), with a loss in parameters: σ2 7→
O(σ2 + c2) and c 7→ O(c).

This is a generalization of the subgaussian random variables we considered in last class, with the
introduction of c. In particular, Subgaussian(σ2) = Subgamma(σ2, 0).

Example

Let Z ∼ N (0, 1) and X = Z2.

Then

E[X] =
1√
2π

∫ ∞
−∞

z2e−
z2

2 dz = 1 . (split the integrand into z · ze−z
2/2

and use integration by parts)

And the centered MGF is

E
[
eλ(X−1)

]
=

1√
2π

∫ ∞
−∞

eλ(z2−1)e−
z2

2 dz

=
e−λ√

2π

∫ ∞
−∞

e

(
λ− 1

2

)
z2 dz

1



= e−λσ
1√

2πσ2

∫ ∞
−∞

e−
z2

2σ2 dz

(
λ− 1

2
= − 1

2σ2

)
= e−λσ

=
e−λ√
1− 2λ

≤ e
4λ2

2 .

(
if |λ| ≤ 1

4

)

So X is Subgamma(4, 4).

Alternatively, if Z is mean 0 and Subgaussian(σ2) and X = Z2 then we claim that X is

Subgamma
(
O(σ4), O(σ2)

)
.

To show this note that from the definition of Subgaussian random variables we know that with
probability 1− δ

Z = O

(
σ

√
log
(2

δ

))
.

So by squaring both sides, we have

Z2 = O

(
σ2 log

(2

δ

))
which fits (III) if σ2 = 0 and c = O(σ2). Thus, after conversion we end up with variance proxy
O(σ4) and exponential scale O(σ2).

2 Basic Properties

• If X1, X2 are independent and are (σ2
1, c1)- and (σ2

2, c2)-Subgamma, then X1 + X2 is
(
σ2

1 +
σ2

2,max(c1, c2)
)
-Subgamma.

• If X is (σ2, c)-Subgamma, then αX is (α2σ2, αc)-Subgamma for any constant α.

3 Johnson-Lindenstrauss-Lemma (84)

Theorem 2 (Johnson-Lindenstrauss-Lemma). Let X1, . . . , Xn ∈ Rd. Then there exist y1, . . . , yn ∈
Rm (m “small”) such that for all i, j:

‖yi − yj‖2 = (1± ε)‖xi − xj‖2

Theorem 3 (Distributional Johnson-Lindenstrauss-Lemma). There exists a random linear map
A ∈ Rm×d (entries of A ∼ N (0, 1/m)) such that ∀x ∈ Rd

‖Ax‖2 = (1± ε)‖x‖2 with probability 1− 2e−Ω(ε2m)

(or with probability 1− δ if m = O
(

1
ε2

log(2
δ )
)
).
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From The Distributional To the Standard Johnson-Lindenstrauss-Lemma

Set yi = Axi with δ = 1
n3 . Then with probability 1− 1

n we have for all i, j:

‖A(xi − xj)‖︸ ︷︷ ︸
=‖yi−yj‖

= (1± ε)‖xi − xj‖

(Probability > 0 certainly implies existence.)

Proving The Distributional Johnson-Lindenstrauss-Lemma

Proof. Select the entries of A according to N (0, 1/m). Then, denoting the ith row of A as Ai, we
have

∀x : yi = Aix ∼
m∑
j=1

N (0, 1/m)xj = N
(

0,
m∑
j=1

x2
j︸ ︷︷ ︸

=‖x‖22

/m
)

meaning yi is normally distributed with mean 0 and variance 1
m‖x‖

2
2.

Therefore,

E
[
‖y‖22

]
=
∑

i = 1m E[y2
i ] = m ·Var[yi] = ‖x‖22

All we need then is
P
[
‖y‖22 is far from E

[
‖y‖22

]]
≤ something small.

Suppose yi ∼ N (0, 1). How does
∑m

i=1 y
2
i concentrate about the expected value m?∑

y2
i is Subgamma(4m, 4). Hence,

P
[∣∣∣∑ y2

i −m
∣∣∣ ≥ t] ≤ 2 ·max

(
e−

t2

8m , e−
t
8

)
≤ 2 ·max

(
e−

ε2m
8 , e−

εm
8

)
(t = εm)

= 2e−
ε2m
8 . (if ε < 1)

4 Bernstein-type Bound

If |X − µ| ≤ m with probability 1—in other words, if X is restricted to a finite interval—then X
is Subgamma

(
2 ·Var[X], 2m

)
.
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Example 1

Xi is a coin with bias pi towards 0. And X =
∑

iXi. Then

E[X] =
∑
i

pi = µ and Var[X] ≤ µ .

Therefore, X is Subgamma(2µ, 2) which implies

P
[
|X − µ| ≥ εµ

]
≤ 2e−min(ε2,ε)µ/4 . (multiplicative Chernoff)

Example 2

In the coupon collector problem we had

Ti ∼ geom(pi) pi =
n+ 1− i

n

where Ti was the arrival time of the ith item.

Consequently,

E[Ti] =
n+ 1− i

n

and
E[T ] =

∑
i

E[Ti] = nHn = O(n log(n)) .

By the Bernstein bound we have that Ti is Subgamma
(
O
(

1
p2i

)
, O
(

1
pi

))
. Therefore, T =

∑
Ti is

Subgamma

(
O

(∑ 1

p2
i

)
, O

(
max

1

pi

))
= Subgamma(n2, n) .

Hence, with probability 1− δ

T ≤ E[T ] +O

(√
n2 log

(2

δ

)
+ n log

(1

δ

))
= O

(
n log

(n
δ

))
.
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