CS 388R: Randomized Algorithms, Fall 2019 October 24th, 2019

Lecture 17: Subgamma variables and Johnson-Lindenstrauss
Prof. Eric Price Scribe: Sebastian Oberhoff

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Subgamma Variables

Definition 1. A random variable X is subgamma with variance prozy o2 and exponential scale ¢

if:

—_

(1) E[e)\(XfIE[X])} < €A22(,2 YAl <

c
This definition implies:

(D)

2

P[|X —E[X]| >t] <2- max(ef2t72,e_2lc> .

(III) With probability > 1 — 4,

X — E[X]| < {202 1n<§> 4 201n<§) .

Either of the latter two properties also implies the definition (I), with a loss in parameters: o2
O(0? + ¢?) and ¢~ O(c).

This is a generalization of the subgaussian random variables we considered in last class, with the
introduction of c. In particular, Subgaussian(c?) = Subgamma(a?,0).

Example

Let Z ~ N(0,1) and X = Z2.

Then
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P T dy=1. (split the integrand into z - ze
Vor ) and use integration by parts)

And the centered MGF is
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So X is Subgamma(4,4).

Alternatively, if Z is mean 0 and Subgaussian(c?) and X = Z2 then we claim that X is
Subgamma (O(c*),0(c?)) .

To show this note that from the definition of Subgaussian random variables we know that with

probability 1 — §
Z = O(a“log(?)) )
7% = O<02 log(?))

which fits (IIT) if 02 = 0 and ¢ = O(0?). Thus, after conversion we end up with variance proxy
O(o*) and exponential scale O(a?).

So by squaring both sides, we have

2 Basic Properties

e If X1, X, are independent and are (07, ¢1)- and (03, c2)-Subgamma, then X + X, is (o +

03, max(c, ¢2))-Subgamma.

e If X is (02, c)-Subgamma, then aX is (a?0?, ac)-Subgamma for any constant a.

3 Johnson-Lindenstrauss-Lemma (84)
Theorem 2 (Johnson-Lindenstrauss-Lemma). Let X1,...,X, € R%. Then there exist yi,...,yn €
R™ (m “small”) such that for all i, j:

lyi — yjll2 = (1 £ €|l — x4]|2

Theorem 3 (Distributional Johnson-Lindenstrauss-Lemma). There exists a random linear map

A € R™? (entries of A ~ N(0,1/m)) such that Vz € R?
|Az]l2 = (1 £ €)||z2 with probability 1 — 2e~ (™)

(or with probability 1 — § if m = 0(6% log(%)))-



From The Distributional To the Standard Johnson-Lindenstrauss-Lemma

Set y; = Ax; with § = % Then with probability 1 — % we have for all 7, j:
[A(zs — x5)| = (1 £ €)|lzs — 4]
N———
=llyi—y;l|

(Probability > 0 certainly implies existence.)

Proving The Distributional Johnson-Lindenstrauss-Lemma

Proof. Select the entries of A according to A (0,1/m). Then, denoting the ith row of A as A;, we

have
Vo : AszNOl/mxj ( ZCL‘ /m)

j=1
=|l=I3
meaning y; is normally distributed with mean 0 and variance - ||z[3.
Therefore,

E[llyll3] =) i =1"E[y]] = m - Varly)] = ||=3

All we need then is
]P’[Hy”% is far from IE[HyH%H < something small.

Suppose y; ~ N(0,1). How does ", y? concentrate about the expected value m?

> y? is Subgamma(4m, 4). Hence,

<2-max<e_68m,e_%) (t =em)

=2 8 . (ife<1)

4 Bernstein-type Bound

If | X — pu| < m with probability 1—in other words, if X is restricted to a finite interval—then X
is Subgamma,(2 - Var[X], 2m).



Example 1
X; is a coin with bias p; towards 0. And X = ). X;. Then

E[X] = Zpi =p and Var[X]| <p.

Therefore, X is Subgamma(2pu,2) which implies

P[|X — p| > ep] < 2e” min(e*,e)u/4 (multiplicative Chernoff)

Example 2

In the coupon collector problem we had

n+1—:
T; ~ geom(p;)  pi=—"—
n
where T; was the arrival time of the ith item.
Consequently,
n+1—1
E[T;] =
n

and

B[T] =} _E[T}] = nH, = O(nlog(n)).

By the Bernstein bound we have that T; is Subgamma (O(#),O(p%)). Therefore, T'= ) T; is

1 1
Subgamma (O <Z 2) ,O <max p) > = Subgamma(n?,n).
p; i

1 )

Hence, with probability 1 — ¢

r< e+ rtion(3) + o)
= o(niog(3))-
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