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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture we give a proof of the Rudelson-Vershynin (RV) theorem [RV05], and then begin
graph sparsification.

2 Inequalities

We derive the Bernstein inequality for scalar random variables, extend this result to symmetric
matrices, and then prove the RV theorem.

2.1 Bernstein Inequality

Let X1, X2, . . . , Xn be independent random variables such that
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2.2 Matrix Bernstein Inequality

Let X1, X2, . . . , XN be independent, symmetric matrices in Rn×n such that
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where we define ‖‖ as the spectral norm for matrices, the l2 norm for vectors and the absolute value
norm for scalars. Analogizing from the scalar case,
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for some constant C. For a proof see [Tro15].
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2.3 Rudelson-Vershynin Inequality

Theorem 1. Let there be m independent vectors Xi ∈ Rn such that

max
i
‖Xi‖ ≤ K ‖E[XiX

T
i ]‖ ≤ 1.
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Proof. Let Yi = XiX
T
i −E[XiX

T
i ]. We would like to bound ‖

∑
i Yi‖ similar to equation (1), which
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Then using the Matrix Bernstein inequality,
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for some constant C. For our application it’s the case that t2

2mK2 ≤ t
2K2 , so
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For the original proof see theorem 3.1 in [RV05].
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3 Graph Sparsification

We approximate a weighted graph G = (V,E, ω) by another graph H = (V, Ẽ, ω̃) where |Ẽ| =
O(K2 log(|V |)/ε2). We do this by proving through the RV theorem that the Laplacian of G is
approximately similar to the Laplacian of H, a random matrix that results from sampling edges
from E dependent on effective resistances and edge weights. The original material for this section
can be seen in [SS08].

3.1 Laplacian

For a weighted graph G = (V,E, ω), we define its Laplacian as

LG =

{
−ω(u,v) if u 6= v∑

z∈{x|(u,x)∈E}w(u,z) if u = v
.

This is equivalently defined as

LG =
∑
e∈E

weyey
T
e

where ye ∈ Z|V | is the all 0s vector besides ye(u) = 1 and ye(v) = −1.

The Laplacian is useful because we can use it to approximate G. For instance, consider G a
representation of a circuit and define the total power needed to run the circuit for particular node-
voltages as

PG(x) =
∑

e=(u,v)∈E

(xu − xv)2we = xTLGx,

where x ∈ R|V | is the node-voltages. For our approximation we would like to prove for all x that

(1− ε)PG(x) ≤ PH(x) ≤ (1 + ε)PG(x)

since this implies that
(1− ε)xTLGx � xTLHx � (1 + ε)xTLGx.

3.2 Effective Resistance

In order to determine how likely each edge should be included in an approximation, we analogize
edge weights, we, to conductance, and measure the effective resistances, Re, between two nodes
that have an edge. We define pe, the probability of sampling an edge, as

pe = weRe.

For an intuitive sense why sampling dependent on we and Re works, note that the effective resistance
between two adjacent nodes is the same as the probability that a random spanning tree contains
those nodes’ connector edge.
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3.3 Spectral Sparsification

Remember that our goal is to approximate G using a graph H that has only O(K2 log(|V |)/ε2)
edges. We can do this by continually sampling an edge from G, modifying this sampled edge’s
weight and adding this modified edge to H̃, where H̃ starts as an all-0s matrix and tends to H
after enough samples. Let Z be a random variable such that

Z = ye

√
we

pe
with probability pe.

Then the expectation of ZZT is

E
[
ZZT

]
=
∑
e∈E

pe
we

pe
yey

T
e = LG.

In the next lecture we will show that using the RV theorem and setting LH = 1
m

∑m
i=1 ZiZ

T
i gives

the bound

E[‖LH − LG‖] . K

√
log n

m

when m = O(K2 log(|V |)/ε2).
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