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1 Overview

In the previous lecture we discussed:

• Bernstein Inequality and Matrix Bernstein Inequality.

• Rudelson-Vershynin Inequality.

• An introduction to graph sparsification.

In this lecture we look at spectral sparsification for complete graphs using the Rudelson-Vershynin
Lemma and then analyze it for all undirected graphs.

2 Setup

Last time we saw the following Lemma due to Rudelson and Vershynin [RV05]:

Theorem 1 (RV Lemma). Let x1, . . . , xm ∈ Rn be independent and satisfying

‖xi‖2 ≤ K (K≥1) and
∥∥E[xixTi ]∥∥ ≤ 1 .

Then

E

[∥∥∥∥ 1
m

m∑
i=1

xix
T
i − E

[
xix

T
i

]∥∥∥∥
]
≤ σK

√
log(n)
m .

Note: For a matrix M we define

‖M‖ = spectral norm

= maximum eigenvalue (if positive semidefinite)

= sup
y 6=0

yTMy

‖y‖22

Given a graph G = (V,E) define the diagonal matrix

D =

d1 . . .

dn


1



where the di are the degrees, as well as the (weighted) adjacency matrix A.

This lets us further define the Laplacian

LG = D −A =
∑
e∈E

weueu
T
e

where we is the weight on edge e and ue is of the form

ue =


−1 j

1 i

(e goes from vertex i to j).

The goal is now: given a dense G, find a sparse H (m = n log(n)) such that LH ≈ LG. That is,

∀x ∈ Rn : xTLHx︸ ︷︷ ︸
PH

= (1± ε)xTLGx︸ ︷︷ ︸
PG

⇐⇒ (1− ε) � LH � (1 + ε)LG

(PH , PG is the power on the graphs H,G respectively.)

Approach

Pick probabilities pe. Set zi :=
√

we
pe
· ue with probability pe. Then

E
[
ziz

T
i

]
=
∑
e

pe
we
pe
ueu

T
e = LG .

So after obtaining zi, . . . , zm in this way we can construct

LH :=
1

m

m∑
i=1

ziz
T
i

obeying E[LH ] = LG.

Question: for what m do we have LH → LG?

3 Warmup: Complete Graph

For a complete graph we have

LG =


n− 1 −1 −1
−1 n− 1 −1 . . .
−1 −1 n− 1
...

. . .

 = nI − 11T

PG(x) = xTLGx
T = n‖x‖22 − (1Tx)2 ∀x s.t. 1Tx = 0
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And what we want to show is

xT (LH − LG)x

xTLGx︸ ︷︷ ︸
n‖x‖22

≤ ε ⇐⇒ ‖LG − LH‖ ≤ nε .

By the RV Lemma we have

E
[
‖LH − LG‖

]
≤ σK

√
log(n)
m

where
K = max

i
‖zi‖ = max

e

√
we
pe
· 2 =

√
n(n− 1) ≈ n and σ = ‖LG‖ = n .

Hence,

E
[
‖LH − LG‖

]
≤ n

√
n log(n)

m .

So n = O
(n log(n)

ε2

)
suffices.

4 Spectral Sparsification for General Graphs

In the previous section we discussed spectral sparsification for complete graphs using the RV lemma
[RV05]. The main observation here is that in the case for complete graphs the distribution was
spherical, i.e. each edge had the same weight. But in the case of general graphs there could be
some edges which are more important than the others. (Imagine the case of a barbell graph for an
intuition. Here the connecting edge should be preserved in order for the two parts of the graph to
remain connected). Thus we must appropriately handle the skewed distribution of a non-complete
graph. We first introduce some notation and consider the simplifying assumption that the graph
is an unweighted undirected graph.

Define U ∈ R|E|×n to be the matrix below, where |E| is the number of edges and n is the number
of vertices of the graph (we define ue for edge e = (a, b) to be (ea − eb) where ex is the elementary
vector ∈ {0, 1}n):

U =


uT1
uT2
...
uTm


LG = UTU, LH = UTSU

where S ∈ R|E|×|E| is a diagonal matrix such that Se,e = #times e sampled
mpe

and m is the number of
samples.

4.1 Intuition from Electrical Engineering

Let v be the voltage at each vertex ∈ Rn and y be the currents across each edge ∈ R|E|.
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Ohm’s Law: states that V = IR or I = V C, where C is the conductance. As we consider an
unweighted graph, the conductance is 1 throughout. Hence we get that I = V which says that the
potential difference is equal to the current. This implies that ∀i, j : yi,j = vi − vj =⇒ y = V U .

Kirchhoff’s Current Law: Consider injecting current, x ∈ Rn into the graph. By Kirchhoff’s
current law, xT1 = 0, due to charge conservation, sum of all incoming and outgoing currents is
zero. Also observe that x = UT y = UTUv = LGv. Since every matrix with real entries must have
a pseudoinverse, we can write that v = L+

Gx. The use of the voltage vector will be in describing
the exact probabilities with which we should choose each edge and sparsify the graph.

Let re be the effective resitance of an edge, i.e. it is the potential difference induced when we inject
one ampere of current between two junctions.

V = IR =⇒ re = voltage gap when we force 1A current across an edge e

= uTe v (when x = ue)

= uTe L
+
Gue

More generally, if we write the effective resistance R as a matrix where the diagonal entries are the
effective resistances, then

R = UL+
GU

T

where re = Re,e.

Claim 2. [SS08] If pe ∝ re(pe = re
n−1), then m = O(n logn

ε2
) suffices for LH to be spectral sparsifier

i.e. LH approximates LG with high probability.

We now look at some properties of R

Lemma 3. R is a projection matrix

Lemma 4. R has n− 1 eigenvalues = 1, (rest = 0)

Lemma 5. E
[
‖RSR−R‖

]
≤ ε

Lemma 6. (1− ε)LG � LH � (1 + ε)LG

Lemma 3

Proof.

R2 = UL+
G(UTU)L+

GU
T

= U(L+
GLG)L+

GU
T

= UL+
GU

T

= R .
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Lemma 4

Proof. This can be seen easily due to R being a projection matrix. Let v be an eigenvector and
λ be the corresponding eigenvalue i.e. Rv = λv. R2v = Rλv = λ2v. But R2 and R are the same
matrices, hence λ2 = λ =⇒ λ ∈ {0, 1}.

Theorem 7 (Foster’s theorem). R has n− 1 eigenvalues = 1 (rest 0).

Using Foster’s theorem we also get that
∑

e re = Tr(R) = n− 1.

Lemma 6

Proof. Assume that Lemma 5 is true for now. Using Markov’s we have the fact that ‖RSR−R‖ ≤ cε
with good probability for some constant c. Note that we can achieve high probability over here if
we revisit the proof of [RV05]. Ignoring the constant c as we perform an asymptotic analysis at the
end.

We have

ε ≥ ‖RSR−R‖
= ‖R(S − I)R‖

= sup
y 6=0

yTR(S − I)Ry

yT y
.

We want to bound

sup
x

xT (LH − LG)x

xTLGx
= sup

x

xTUT (S − I)Ux

xTUTUx

= sup
y=Ux

yT (S − I)y

yT y

(Note that y = Ux = UL+
GUUTx = RUTx. Thus, y lies in the range of R always.)

= sup
y∈range(R), y=Ry′

y′TRT (S − I)Ry′

y′TRTRy′

= sup
y∈range(R), y=Ry′

y′TR(S − I)Ry′

y′TRRy′

= sup
y∈range(R), y=Ry′

y′TR(S − I)Ry′

y′T y′
(as ‖R‖ = 1)

≤ ε .

This gives us that
(1− ε)LG � LH � (1 + ε)LG .
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Lemma 5

Proof.

RSR =
∑
e

Se,e ·ReRTe (where Re ∈ Rn is the eth column of R)

=
∑
e

# times e sampled

mpe
ReR

T
e .

Set zi = Re√
p
e

with probability pe, then S =
∑m

i=1 ziz
T
i , has E[S] = R.

RV lemma uses
‖E[ziz

T
i ]‖ = ‖R‖ = 1

‖zi‖ =
1
√
pe
‖Re‖2 =

√
re√
p
e

=
√
n− 1 (1)

and from the statement of the lemma, we get that

E
[
‖RSR−R‖

]
≤
√

(n− 1) log n

m
≤ ε .

(1) uses the fact that ‖Re‖2 =
√
re which will see in the next class to complete the proof.
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