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1 Definition and Properties

Markov chain is a discrete, memoryless stochastic process. It has finite number of states x ∈ [n]
and transition probability associated on each pair of states pij as followed,

pij = P[xt+1 = j|xt = i] = P[xt+1 = j|xt = i, xt−1, . . . , x0] (1)

where the last equality describes its Markovian property. We often writes the transition probabilities
together in a form of transition matrix P ∈ [0, 1]n×n such that Pij = pij and

∑n
j=1 Pij = 1 for all i.

Let q(t) ∈ Rn be a distribution over n states at time t. Markov chain evolves this distribution by

q(t+1) = q(t)P = q(0)P t+1 (2)

Stationary distribution π ∈ Rn is a stationary distribution if π = πP , i.e. the distribution
does not change as time moves forward. It corresponds to an eigenvector of P having eigenvalue 1.

1.1 Fundamental Theorem of Markov Chain

Definition 1. A Markov chain is ergodic if its stationary distribution π is unique and

lim
t→∞

q(0)P t = π

for all possible distribution q(0).

Intuitively, ergodicity guarantees that every state distribution will eventually converge to a unique
distribution asymptotically.

Theorem 2. If a Markov chain satisfies the following conditions, then it is ergodic.

1. Finite: the number of states n <∞.

2. Irreducible: ∀i, j ∃ path i j.

3. Aperiodic: the gcd of distances of all loops li (path from i to i) is 1 for all i ∈ [n].

These guarantees that every other eigenvalue has magnitude less than 1 with only one eigenvalue 1
associated with the stationary distribution. When applying P (t), the direction to this eigenvector
dominates the evolution, and so every initial state converges the unique π.
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Hitting time hij = E[number of steps from i to reach j]. Note that hii = 1
πi

. Closely related,

define N(i, t) as the number of times visiting state i in t steps. Then we have limi→∞
N(i,t)
t = πi.

Commute time Cuv = huv + hvu, the number of steps for u v  u.

Cover time Cu(G) = E[number of steps to visit all vertices].

2 Random Walks on Undirected Graph

Let G = (V,E) be an undirected graph with |V | = n and |E| = m. We can consider it as a Markov
chain with n states and define the transition probabilities on the edges as follows:

Puv =

{
1

d(u) if (u, v) ∈ E,
0 otherwise.

(3)

If the graph is non-bipartite, G is an ergodic Markov chain. Since it is an undirected graph, any
edge contains a loop of length 2, so if there is a cycle of odd length (non-bipartite), the gcd of loops
is 1.

We also know that πu = d(u)
2m and hitting time huu = 2m

d(u) , for any u, v ∈ V , where d(u) is the degree
of u. Some interesting examples are

• Clique: huv = Θ(n), cuv = Θ(n) follows the recurrence of identical Bernoulli trials. Cu(G) =
Θ(n log n) follows from the coupon collector problem.

• Line: huv = Θ(n2), cuv = Θ(n2), Cu(G) = Θ(n2) from random walks on a discrete line.

• Lollipop: a graph with a clique containing n
2 vertices, and a line extending out with length

n
2 . If u is in the clique and v is the vertex at the far end of the line (from the clique),
huv = Θ(n3), hvu = Θ(n2), Cuv = Θ(n3), proved by the following lemma.

Lemma 3. For any u, v ∈ V , the commute time Cuv is

Cuv = 2m ·Reff (u, v),

where Reff (u, v) is the effective resistance between vertices u and v

Let’s first recall some spectral graph notations from last lecture. Let U ∈ Rm×n be a collection
of m edges such that each k-th row represents a directed edge (u, v) with Uku = −1 and Ukv = 1
and zero everywhere else. Let D be the diagonal matrix filled with degree of vertices Duu = d(u),
A be the adjacency matrix, and L = D − A be the Laplacian of the graph. We can show that
L = D−A = U>U . The effective resistance is defined on every pair (u, v) ∈ V 2 to be Reff (u, v) =
(ev − eu)>L†(ev − eu) where eu ∈ Rn is a standard basis vector with 1 entry on u-th component
and 0 everywhere else, and L† is the pseudo-inverse of L.

To prove the lemma, we need the following claim:
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Claim 4. For u ∈ V , let iu be a vector in Rn such that

iu :=


d(1)

...
d(u)

...
d(n)

−


0
...

2m
...
0

 =
∑
v∈V

d(v)(ev − eu). (4)

Let x = L†iu. Then, we have

xv − xu = hvu.

Intuitively, given a vertex u, suppose we inject electrical current through all other vertices v 6= u
with d(v) amps and through vertex u with d(u)−2m (since d(u) < 2m, we technically draw current
out of u). Let iu be the vector of such currents, Consider the voltage X ∈ Rn. Ohm’s law gives
X = L†iu assuming Xu = 0. The claim states that we can evaluate the hitting times by Ohm’s
law.

Proof. Define hvv = 0, for any v 6= u, and let N(v) be the set of neighbors of v. Then, we have

hvu =
∑

w∈N(v)

1

d(v)
(1 + hwu)

= 1 +
∑

w∈N(v)

1

d(v)
hwu

Multiplying both sides with d(v),

d(v)hvu −
∑

w∈N(v)

hwu = d(v)

∑
w∈N(v)

(hvu − hwu) = d(v) (5)

The vector of hitting time ending at u, h∗u ∈ Rn, must satisfy the equation (5), written concisely
as Lh∗u = iu. Hence, the solution by taking pseudo-inverse is h∗u = L†iu = X; in other words,
hvu = Xv by applying currents according to iu.

Now, we are ready to prove the lemma:
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Figure 1: DFS traversal of the spanning tree.

Proof of Lemma 3. For any pair u, v ∈ V :

Cuv = huv + hvu

= (L†iv)u + (L†iu)v

= (ev − eu)>(L†iv + L†iu) ((L†iu)u = Xu = 0)

= (ev − eu)>L†(iu − iv)

= (ev − eu)>L†

(∑
w∈V

d(w)(ev − eu)

)
(from equation (4))

= 2m · (ev − eu)>L†(ev − eu)

= 2m ·Reff (u, v)

Cover time To upper bound the cover time Cu(G), we can consider a spanning tree of G, say
TG. Then, we can start from u and traverse the whole tree by DFS. Note that the DFS path goes
through each edge twice (See Figure 1). Therefore, the expected total time for visiting all vertices
is

Cu(G) =
∑

(v,v′)∈TG

hvv′ + hv′v

=
∑

(v,v′)∈TG

cvv′

=
∑

(v,v′)∈TG

2m ·Reff (v, v′)

≤
∑

(v,v′)∈TG

2m (Reff (v, v′) ≤ 1 for any edge (v, v′) ∈ E.)

= 2m · (n− 1) (TG has n− 1 edges.)
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