
CS 388R: Randomized Algorithms, Fall 2019 November 21st

Lecture 25: RandomWalk on Undirected Graphs; Closest Pair in Plane

Prof. Eric Price Scribe: Hongru Yang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Markov Chain; Random Walk on Undirected Graphs (Contin-
ued)

Hitting time:

huv = E[time to reach v starting at u]

Commute time:

Cuv = huv + hvu = 2mReff(u, v)

Cover time:

Cu(G) = E[time to visit all vertices starting at u]

C(G) = max
u

Cu(G) ≤ 2m(n− 1)

Theorem 1. mRmax ≤ C(G) ≤ O(1)mRmax log n, where Rmax = maxu,v Reff(u, v).

Proof. Lower bound: C(G) = maxuCu(G) ≥ maxu maxv huv ≥ maxu,v
Cuv

2 = mRmax.

Upper bound: Suppose starting at u,

P[haven’t visited v by time t] ≤ huv
t
≤ Cuv

t
=

2mReff(u, v)

t
≤ 2mRmax

t

If we take t = 4mRmax, by Markov’s inequality, we have P[haven’t visited v by time t] ≤ 1
2 . How-

ever, observe that the above proof holds for any starting u. Thus, we have

P[haven’t visited v between time [t+ 1, 2t] regardless of state at t] ≤ 1

2

which implies

P[v not reached by t2 log n] ≤ 1

22 logn
=

1

n2

P[not cover the entire graph by t2 log n] ≤ 1

n2

1

Application

Check s − t connectivity on an undirected graph in O(log n) space. 2mn steps per (s, t) pair.
O(log n) space to tell where I am and keep track of how many steps performed.

2 Closest Pair in Plane

Suppose we have n points in plane, P = {p1, p2, . . . , pn} and we want to find CP (P) = mini 6=j ‖pi−
pj‖2. Naively we can do this in O(n2). We are going to show a deterministic algorithm that runs
in O(n log n) time and a randomized algorithm that runs in expectation O(n) time.

Deterministic Closest Pair in Plane

1. Recursively split all the points by its x coordinate. Then P = L∪R and |L| = |R| = n
2 . Solve

CP (L), CP (R) and let σ = min(CP (L), CP (R)).

2. Find the minimum distance δ of pairs across boundary L↔ R.

3. Return min(δ, σ).

To do step 2 in O(n) time, first notice that we only need to go through all the points that are
within σ distance to the left and right of the splitting boundary. Further, we can divide the region
into squares of size σ × σ by y axis. Inside each square, there can be at most 4 points. Therefore,
for a given point that is to the left of the boundary, we only need to look at the 3 adjacent box to
the right of the boundary and there are at most 8 points.

To achieve above, we use bxσ c, b
y
σ c as key to store points into a hash table. So, we can query all the

points in a square in O(1) time.

Randomized Closest Pair in Plane

Suppose we have correct σ beforehand, we can split the plane into σ × σ small squares and all
squares have at most 4 points inside. Then the closest pair lies in adjacent cells. We can then scan
through all points and for each point we check all adjacent cells and then add the point into the
hash table.

New goal: given a guess σ, is σtrue > σ, σtrue = σ, σtrue < σ?

We can run the algorithm and if we have more than 5 points in a square then σtrue < σ.

New algorithm:

1. Randomly assign order to all the points and we denote the first i points in this order Pi.

2. Scan through all the points in this order. For each point pi,

• Find CP (Pi).

2

• If CP (Pi) < σ, rebuild the hash table of Pi with σ = CP (Pi).

• Else add pi to the hash table.

3. Return σ

Notice that we can compute CP (Pi) in constant time since all the points in the hash table are at
least σ distance apart (and thus each square has at most 4 points) and we can query all the points
that are in adjacent cells of pi in constant time.

The running time of this algorithm in expectation is
∑n

i=1 1 +P[need to rebuild for pi]i = 3n since
P[need to rebuild the hash table for pi] = P[minimum distance among Pi uses pi] = i−1

(i
2)

= 2
i .

3 Introduction to Point Location in Regions Split by Lines in
General Location

If we have a set of n lines L in general location, we will have
(
n
2

)
+ 1 = Θ(n2) regions. We can

prove this by observing that whenever we add a new line we will create total number of lines more
regions.

Definition 2. The triangulation of L is defined by adding line segment between intersections of
lines in L to split multi-sided regions so that each divided region is a triangle. (We assume parallel
lines intersecting each other at infinity.)

It can be shown that there are O(n2) triangles in a triangulation.

We assign labels to all the regions and we want to output label of a given point.

Our goal is to create a data structure with O(n2) time and space complexity beforehand so that
we can do fast query later.

A Related Problem: R-ary Tree

R-ary can be created by first randomly sample R points from a set of points associated with one
node. Then these points define a splitting of all the points. Create children of the node based on
the splitting.

Then, if for a given node we have r branches,

E[size of a given branch] =
n

r

By Chernoff’s bound this implies,

P[size of a given branch ≥ n

r
log r] ≤ e− log r =

1

r

which implies w.p. 3/4, the maximum branch size is at most n log r
r .

Thus the expected query time can be bounded by Q(n) ≤ O(r) + Q(n log r
r) ≤ O(1) + Q(n/10) =

O(log n) if we take r = 10.

3

