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1 Overview

In previous lectures we discussed hash functions and how they can be used in hash functions. We
discussed how we can use n-wise independence to efficiently run hashing algorithms through specific
efficiently computable and representable hash families.

In this lecture we discuss locality sensitive hashing for computing approximate nearest neighbors.
Locality sensitive hashing is another way to use hashing. It uses hashing for high dimensional
computational geometry. In particular, we use it solve an approximate version of the nearest
neighbors problem.

1.1 Nearest neighbors problem

The nearest neighbors problem takes n points, and for another point tries to give the closest point
in the n original points. Specifically, we want to construct a data structure to answer ”nearest
neighbor” queries fast, but approximately.

So let our set of points be Y = {p1,...,p,} € X (think of X = R% d >> 1). We want to construct
a data structure so that given a query to some point p in X, find i such that ||p — p;|| is minimized.
But actually getting the min is tricky, so we relax to:

If min; ||p — p;|| = r, we find j such that ||p — p;|| < cr for some approximation factor c.

This is the nearest neighbor problem, but locality sensitive hashing is best at solving 'near’ neighbor
queries.

1.2 ”Near” neighbors

Near neighbor queries are like nearest neighbor, except we are told the radius r at the beginning.
That is r such that min; ||p — p;|| < r find some j € [n] such that |[p — p;|| < cr for constant factor
c. More generally, an r-near query with constant factor ¢ will return a j such that ||p — p;|| < er if
there is some i so that min; ||p — p;|| < 7.

We can use r-near queries to solve nearest neighbor by checking with r =1,2,4,8, ..., R.

We only need to give output if there is a point within r, even if something is within ¢r. But it may
always output any point within cr, whether there are points within r or not.



We only consider points that are binary strings X = {0,1}¢ with hamming distance metric. For
other metrics there are slightly different approaches, but general methods apply for other spaces
and other metrics.

2 Different Algorithm Runtimes
We are trying to optimize:

1. Time per query

2. Space to store data structure.

We are ignoring the initialization overhead, though it is usually very close to the space requirements.
Then the run time of a few algorithms are:

Algorithm Time Space
Naive Exhaustive search nd nd

JL Exhaustive search d—+ %‘é(n) %‘é(n)
Precompute Answers d 2%10g(n)
JL Precompute d nt/e log(n)
LSH dn” nite
LSH (Hamming) d+n'°(k 4 dn'~°) plti/e

Naive algorithm: Store everything in a list and search with exhaustive search. Takes nd space
and nd lookup time. If d is very large, we can approximate using a smaller space with John-
son—Lindenstrauss (JL) dimensionality reduction. Then space becomes nk’%#. Time per query is

just d time for embedding plus ’; log(n) for comparison.

Precompute: we can precompute every answer and store it in 24 log(n) space and then get d time
lookup. This is good if d = log(n). Otherwise we can again use JL again to get a d time lookup
with polynomial space in n (but exponential space in €!).

Locality Sensitive Hashing (LSH) gives another trade off. Gives lookup time n” and space n'*?
for p = % These notes are all for hamming or L; distance, but for Ls can get down to p = C%
Thus we will use p instead of % Similarly there is an even tighter bound for the Ly norm than the

specific hamming bound given above.

3 Algorithm Outline

What we would like is that nearby points tend to hash to the same bucket, and distant hashes tend
to hash to different buckets. That is h : X — U where U are the cells of our hash table. When we
look at P[h(x) = h(y)], we want it to decrease as ||z — y|| increases.

Specifically, we want a p; and po so that:



Va,y: |z -yl <r = Plh(z) = h(y)] = p
|z —yll = er = Plh(z) = h(y)] < pa

If we have this, then we will get LSH with parameter p = log(1/p1)/log(1/p2). This will end up
being the p in LSH above and improves as p; increases and ps decreases.

3.1 Intuition on Technique Limits

For rest of the notes, we will construct locality sensitive hashing, but first we will look at the limits
of this method.

Let us analyze points that are just in a line all separated by distance r. Lets call then x, 21, ..., 2c—1, y.
Then the probability hA(z) = h(y) which is at most p2 is bounded below by the probability all the
z hash to the same thing. Since we are only looking for intuition, let us assume all these collisions
are independent (even though we know this is probably wrong). Then we see that:

p2 = Plh(z) = h(y)]
>P[h(z) = h(z1) = h(z2) = ...h(zc—1) = h(y)]
h

~P[h(z) = h(21)-]P[h(z1) = h(z2)] - ... - P[A(zc—1) = h(y)]
>p1-P1c Pl
=pf

So we don’t expect to get po > p{. Now, this is NOT a proof that such a bound is optimal, but
such a bound is a reasonable goal. Indeed, as stated above, there are improvements that can be
made over this in the Ly space. But this is indeed what we get for hamming distance of strings.

4 Algorithim

4.1 Constructing the Locality Sensitive Hash

To construct our locality sensitive hash, we first make a locality sensitive hash with an appropriate
p. Then we repeat to decrease py and get the false positive rate small.

1. Let h output one coordinate of its input: i. That is, for some random i, h(xz) = x;. Then
Plh(z) = h(y)] =1— w. Thus py =1 — 5 and pp =1 — <. Then

p =log(1/p1)/log(1/p2) ~

ol

This comes from log(1 — €) =~ —e + O(e?), or from log(1/p1)/log(1/p2) = Iog 1(p2).
Pl
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n

2. Now we want to get p; = % and po < —=. Let

g(z) = (hi(x), ha(x), ..., hi(z)) for independent h from step 1

Now we are choosing k random coordinates of x and using that as our hash function. Then

k
Plg(z) = g(y)] = (1 — w>

1
Then py 4 = plfvh and pg 4 = pgh. Now we want to set k so that py 4 = %, soset k = %.
Then
PLg =Pin P2g =Pip
r log(n) cr log(n)
—(1 — =) =Teg(i—r/d) —(1 — =) =Teg(i—r/d)
(-5 -2
_ ' —log,_, 4(n) ' —clog,_, ,4(n)
=(1 — — 81—r/d <(1 == g1—r/d
(-5 <(1-1)
1 1
n - n¢

4.2 Solving Near Neighbors with LSH

Now we take this small false positive rate from above and look for hash collisions. This will give
false positives much more rarely than it gives true positives. Then we will repeat many times so
that we give true positives very often but false negatives still rarely.

1. LSH uses g as a hash function, which outputs to {0, 1}’“. We store each point into a hash
table using g. We will later lookup close points using this hash, hoping that the hash stores
them together. Using a linked list hash table, this will use 2¥ +n = O(n) space to store the
hash table.

To query q, we will hash q and look through the linked list until we find some p; within
distance cr to q. The time this will take is the amount of time to hash plus the amount of
time it takes to compare distances times the number of collisions of far points in this bucket
plus one if something within ¢r is in this bucket.

The expected time to hash is just k, the number of expected collisions is at most - and a
length comparison takes time d. So the expected time is k + n%‘l_l if there are no matches and
d larger if there are. We can pessimistically bound this by O(d).

We fail if every point within r does not collide, which if there is a point close, is chance at
most 1 —p; =1 —1/n”. So we have space O(n) with success probability #.

2. To get the LSH parameters above, we repeat nf times to get constant factor probability of
success. Can do log(n) more to get high probability. Then the space is just n!** and time
dn?.

If we analyze a tiny bit closer, we actually see that lookup time from step 1 was only O(d)
if we find a match. Otherwise it is expected to be much smaller. Further, a match will only

happen once and then we will immediately return. Thus if we analyze closely, we can find a
slightly better expected lookup time of O(d + nfk + dnf+17¢).



4.3 LSH Recap

So LSH just starts with a naive hash function with good p, but high false positive. Then we apply
many of these to get a very small false positive rate, and a larger but still small true positive rate.
Then we try looking up with this new hash function to find a near neighbor with a small positive
rate, but a much smaller false positive rate. To make finding a match likely, repeat this hash lookup
with many different hashes. If there is a good answer, this algorithm will find an okay answer. In
particular this algorithm works well if p is significantly less than 1.



