CS 388R: Randomized Algorithms, Fall 2019

September 12

Lecture 5: Coupon Collector; Balls and Bins

Prof. Eric Price

Scribe: James Dong, Jack Youstra

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHEKED FOR CORECTNES

1 Coupon Collector

Problem description: Let's say a certain cereal company is selling cereal boxes with one of n different figures. How many cereal boxes do you need to buy in order to collect all the figures? Let n be the number of figures. Question: how long does this take?

1.1 Expected number of draws

Idea: let Z_i be the time until the next new item when *i* items are unseen. Then $T = Z_n + \cdots + Z_1$, and by linearity of expectation we have $\mathbb{E}[T] = \sum_{i=1}^n \mathbb{E}[Z_i]$. Each Z_i is the number of random draws with probability i/n, so $Z_i \sim \text{Geometric}(i/n)$, and $\mathbb{E}[Z_i] = n/i$.

$$\mathbb{E}[T] = n \sum_{i=1}^{n} 1/i = nH_n \le n(\log n + 1).$$

1.2 Concentration bounds

Now we want to find concentration bounds. Is it likely that this process will take a lot of draws?

First try: Markov's inequality gives $T \leq 3nH_n$ with probability 2/3. For error probability 1/n, we need n^2H_n draws.

Next try: Chebyshev's inequality: $\mathbb{P}[|T - nH_n| \ge t] \le \sigma^2/t^2$. $\sigma^2 = \operatorname{Var}(T) = \sum_{i=1}^n \operatorname{Var}(Z_i)$ since the time we found one item does not influence how many more draws you need until the next item, so Z_i are independent. From Wikipedia, we have $\operatorname{Var}(Z_i) = n(n-i)/i^2$, so

$$\sigma^2 = n \sum \frac{n-i}{i^2} \le n^2 \sum 1/i^2 \le n^2 \pi^2/6.$$

So $\sigma = O(n)$, so $\mathbb{P}[|T - nH_n| \ge tn] \le \pi^2/6t^2$.

Note: to get the tightest bound, make use of the fact that each Z_i is geometric and thus subexponential, so $T = \sum Z_i$ is subgamma (i.e. $\mathbb{E}[e^{\lambda x}] \leq e^{\lambda^2 \sigma^2/2}$ for all $\lambda \leq B$ for some bound B), which somehow implies that the tail is exponential.

1.3 Alternative concentration bound

 $\mathbb{P}[\text{element } i \text{ not seen by time } T] = (1 - 1/n)^T,$

so by union bound

 $\mathbb{P}[\text{any element not seen by time } T] \leq n(1-1/n)^T \approx ne^{-T/n}.$

2 Balls and Bins

We throw n balls into n bins.

 $X_i \coloneqq \#$ balls in bin i

Questions: $\mathbb{E}[X_i]$? $\mathbb{E}[\max X_i]$? $\mathbb{E}[\operatorname{empty bins}]$? Concentration?

2.1 Expectation of each X_i

We know $\sum X_i = n$, so by linearity of expectation $\mathbb{E}[X_i] = 1$.

2.2 Concentration of $\max X_i$

Turns out it's easier to look at concentration first than to derive expectation.

Let's look at $\mathbb{P}[X_i = k] = \binom{n}{k} \frac{1}{n^k} \left(1 - \frac{1}{n}\right)^{n-k}$.

Key property:

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

The left side follows from the fact that

$$\binom{n}{k} = \frac{n}{k} \cdot \frac{n-1}{k-1} \dots \frac{n-k+1}{1},$$

and each individual fraction is less than n/k. The right side follows from Stirling's approximation.

Then $\mathbb{P}[X_i = k] \le (en/k)^k (1/n)(1 - 1/n)^{n-k} \le (e/k)^k$. $\mathbb{P}[X_i \ge k] = \sum_{j=k}^{\infty} (e/j)^j \le 2(e/k)^k$ if $k \ge 6$.

Then by union bound

$$\mathbb{P}[\max X_i \ge k] \le n \,\mathbb{P}[X_i \ge k] \le 2n(e/k)^k.$$

For this to be less than a constant, we have $\mathbb{P}[\max X_i \ge k] \le 1/2$ whenever $(k/e)^k \ge O(n)$. Turns out if $k = \Theta(\log n/\log \log n)$, we have $(k/e)^k \ge \sqrt{\log n^k} = (\log n)^{\frac{1}{2}k} = (\log n)^{\Theta(\log_{\log n} n)} = n$.

3 Negative association

Definition 1. A set of random variables $x_1, ..., x_n$ is negatively associated (N.A.) if for all disjoint subsets $I, J \subseteq [n]$, and for all monotonically nondecreasing (a mirror argument holds for monotonically nonincreasing) f, g, the following inequality holds

$$\mathbb{E}[f(X_I) \cdot g(X_J)] \le \mathbb{E}[f(X_I)] \mathbb{E}[g(X_J)]$$

This means it concentrates at least as well as independent variables, and one variable tends to be smaller when another is bigger.

3.1 Zero-one lemma

Lemma 2. If $x \in \{0,1\}$ and $\sum x_i = 1$, then x is negatively associated.

Proof. Without loss of generality we assume that f(0) = g(0) = 0. In fact for any constant c we have

$$\mathbb{E}[(f(X_I) + c) \cdot g(X_J)] = \mathbb{E}[f(X_I) \cdot g(X_I)] + c \mathbb{E}[g(X_J)]$$
$$\mathbb{E}[f(X_I) + c] \mathbb{E}[g(X_J)] = \mathbb{E}[f(X_I)] \mathbb{E}[g(X_J)] + c \mathbb{E}[g(X_J)].$$

Hence a translation of f does not affect the correctness of inequality. This arguments also works for function g. Thus we can always assume f(0) = g(0) = 0.

For all inputs, $f(x_i), g(x_j) \ge 0$.

$$\mathbb{E}[f(X_I)g(X_J)] = 0 \le \mathbb{E}[f(X_I)]\mathbb{E}[g(X_J)].$$

The first equality comes from the fact that either $X_I = 0$ or $X_J = 0$.

3.2 Composition rules

- 1. If have N.A. random variables and apply monotonically nondecreasing function, the application of the function creates a new N.A. set of random variables.
- 2. If X, Y are individually N.A. and independent, then (X, Y) is N.A.

This relates back to balls in bins!

Take $W_{i,j} = 1$ iff ball *i* lands in bin *j*. Then,

- 1. All $W_{i,*}$ are negatively associated with each other, and
- 2. $W_{*,j}$ is also negatively associated.

Even though Z_i isn't independent, we can still use the Chernoff bound because the Chernoff bound is based on the moment-generating function which changes little for negative associativity.

Independence:
$$\mathbb{E}(e^{\lambda(\sum z_i - \mu_i)}) = \prod_i \mathbb{E}(e^{\lambda(z_i - \mu_i)})$$

Negative associativity: $\mathbb{E}(e^{\lambda(\sum z_i - \mu_i)}) \leq \prod_i \mathbb{E}(e^{\lambda(z_i - \mu_i)})$