
CS 388R: Randomized Algorithms, Fall 2019 September 12

Lecture 5: Coupon Collector; Balls and Bins

Prof. Eric Price Scribe: James Dong, Jack Youstra

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHEKED FOR CORECTNES

1 Coupon Collector

Problem description: Let’s say a certain cereal company is selling cereal boxes with one of n different
figures. How many cereal boxes do you need to buy in order to collect all the figures? Let n be the
number of figures. Question: how long does this take?

1.1 Expected number of draws

Idea: let Zi be the time until the next new item when i items are unseen. Then T = Zn + · · ·+Z1,
and by linearity of expectation we have E[T ] =

∑n
i=1 E[Zi]. Each Zi is the number of random draws

with probability i/n, so Zi ∼ Geometric(i/n), and E[Zi] = n/i.

E[T ] = n

n∑
i=1

1/i = nHn ≤ n(log n+ 1).

1.2 Concentration bounds

Now we want to find concentration bounds. Is it likely that this process will take a lot of draws?

First try: Markov’s inequality gives T ≤ 3nHn with probability 2/3. For error probability 1/n, we
need n2Hn draws.

Next try: Chebyshev’s inequality: P[|T − nHn| ≥ t] ≤ σ2/t2. σ2 = Var(T ) =
∑n

i=1 Var(Zi) since
the time we found one item does not influence how many more draws you need until the next item,
so Zi are independent. From Wikipedia, we have Var(Zi) = n(n− i)/i2, so

σ2 = n
∑ n− i

i2
≤ n2

∑
1/i2 ≤ n2π2/6.

So σ = O(n), so P[|T − nHn| ≥ tn] ≤ π2/6t2.

Note: to get the tightest bound, make use of the fact that each Zi is geometric and thus subexpo-
nential, so T =

∑
Zi is subgamma (i.e. E[eλx] ≤ eλ

2σ2/2 for all λ ≤ B for some bound B), which
somehow implies that the tail is exponential.

1.3 Alternative concentration bound

P[element i not seen by time T ] = (1− 1/n)T ,
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so by union bound

P[any element not seen by time T ] ≤ n(1− 1/n)T ≈ ne−T/n.

2 Balls and Bins

We throw n balls into n bins.
Xi := # balls in bin i

Questions: E[Xi]? E[maxXi]? E[empty bins]? Concentration?

2.1 Expectation of each Xi

We know
∑
Xi = n, so by linearity of expectation E[Xi] = 1.

2.2 Concentration of maxXi

Turns out it’s easier to look at concentration first than to derive expectation.

Let’s look at P[Xi = k] =
(
n
k

)
1
nk

(
1− 1

n

)n−k
.

Key property: (n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

The left side follows from the fact that(
n

k

)
=
n

k
· n− 1

k − 1
. . .

n− k + 1

1
,

and each individual fraction is less than n/k. The right side follows from Stirling’s approximation.

Then P[Xi = k] ≤ (en/k)k(1/n)(1− 1/n)n−k ≤ (e/k)k.

P[Xi ≥ k] =
∑∞

j=k(e/j)
j ≤ 2(e/k)k if k ≥ 6.

Then by union bound
P[maxXi ≥ k] ≤ nP[Xi ≥ k] ≤ 2n(e/k)k.

For this to be less than a constant, we have P[maxXi ≥ k] ≤ 1/2 whenever (k/e)k ≥ O(n). Turns

out if k = Θ(log n/ log logn), we have (k/e)k ≥
√

log n
k

= (log n)
1
2
k = (log n)Θ(loglogn n) = n.

3 Negative association

Definition 1. A set of random variables x1, ..., xn is negatively associated (N.A.) if for all dis-
joint subsets I, J ⊆ [n], and for all monotonically nondecreasing (a mirror argument holds for
monotonically nonincreasing) f , g, the following inequality holds
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E[f(XI) · g(XJ)] ≤ E[f(XI)]E[g(XJ)]

This means it concentrates at least as well as independent variables, and one variable tends to be
smaller when another is bigger.

3.1 Zero-one lemma

Lemma 2. If x ∈ {0, 1} and
∑
xi = 1, then x is negatively associated.

Proof. Without loss of generality we assume that f(0) = g(0) = 0. In fact for any constant c we
have

E[
(
f(XI) + c

)
· g(XJ)] = E[f(XI) · g(XI)] + cE[g(XJ)]

E[f(XI) + c]E[g(XJ)] = E[f(XI)]E[g(XJ)] + cE[g(XJ)].

Hence a translation of f does not affect the correctness of inequality. This arguments also works
for function g. Thus we can always assume f(0) = g(0) = 0.

For all inputs, f(xi), g(xj) ≥ 0.

E[f(XI)g(XJ)] = 0 ≤ E[f(XI)]E[g(XJ)].

The first equality comes from the fact that either XI = 0 or XJ = 0.

3.2 Composition rules

1. If have N.A. random variables and apply monotonically nondecreasing function, the applica-
tion of the function creates a new N.A. set of random variables.

2. If X, Y are individually N.A. and independent, then (X,Y ) is N.A.

This relates back to balls in bins!

Take Wi,j = 1 iff ball i lands in bin j. Then,

1. All Wi,∗ are negatively associated with each other, and

2. W∗,j is also negatively associated.

Even though Zi isn’t independent, we can still use the Chernoff bound because the Chernoff bound
is based on the moment-generating function which changes little for negative associativity.

Independence: E(eλ(
∑
zi−µi)) =

∏
i

E(eλ(zi−µi))

Negative associativity: E(eλ(
∑
zi−µi)) ≤

∏
i

E(eλ(zi−µi))
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