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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHEKED FOR CORECTNES

1 Power of Two Choices

Take the balls in bins problem, and modify it so that there’s two choices (instead of one choice) for
each ball to go into each bin (with each ball opting for the less-full bin). This should reduce the
number of collisions.

1.1 Expected number of balls in any bin

Is one, same as with only one choice. A more interesting question arises about the maximum
number of balls.

1.2 Expected maximum number of balls in any given bin

Assisted with a claim: Let

Vi(t) = number of bins after t balls with more than i balls inside

ht = height at which the tth ball is placed

An example. Suppose hi is the new height of the bin that the ith ball lands in, and suppose t = 7.

h = (h1, h2, ..., h7) = (1, 1, 1, 2, 1, 2, 3)

V1(t) = 4 (count the number of ones)

V2(t) = 2

V3(t) = 1

Vi(t) = number total where ht = i

An aside - whenever “with high probability” is mentioned, it refers to P = 1 − n−c for some
arbitrary constant c.

We have another claim - increasingly higher heights are associated with an increasingly smaller
number of bins with that height. Specifically, we have (with high probability) ∀i ≥ 4, 1 ≤ t ≤ n
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Vi(t) ≤ βi ∗ n

We can see a base case

β4 =
1

4

This sequence decays faster than exponentially:

βi+1 = 2β2i

And with high probability, there exists an h = O(log(log(n))) such that the following statement
holds.

Vh(t) <
O(log(n))

n

We prove this by inducting on i.

We choose a base case of i = 4 because one and two are too small to make the doubling every step
irrelevant (relative to the exponential), and three could be inconvenient. The proof for the base
case is trivial (n balls can lead to max n

4 bins of height ≥ 4).

For now, let’s suppose something a bit more strong than the inductive hypothesis: suppose that
the hypothesis is deterministically true for tree with height i.

However, we can’t suppose that it always happens - it may fail at a higher step, and if that happens,
it’ll steadily get worse. So, at each height i, define Yt = 1 if ht = i+ 1 and Vi(t− 1) ≤ βin. Yt = 0
otherwise.

This implies that

E[Yt] = Pr[Yt = 1] ≤ Pr[ht ≥ i+ 1 | Vi(t− 1) ≤ βin] ≤
(
βin

n

)2

= β2i .

Thus E[
∑

t Yt] ≤ β2i n = 1
2βi+1n.

The next step would be to analyze Pr [
∑
Yt ≥ βi+1n], but Yt aren’t independent. However, there’s a

way out of this! If we’re able to show that no matter what happens over the preceding steps 1, ..., t−
1, that E[Yt | Y1, . . . , Yt−1] ≤ β2i , we could say that there exists set of independent random variables
Z = {Z1, ..., Zt} that stochastically dominate y. We say that Z stochastically dominates Y
if there exists correspondents distribution over Z × Y with marginals Z, Y such that Zi ≥ Yi
always. This is true since if Vi(t− 1) > βin then all Yt, Yt+1, . . . , Yn would be equal to 0, otherwise
Pr[Yt = 1] ≤ β2i . Thus we have

Pr
[∑

Yt ≥ βi+1n
]
≤ Pr

[∑
Zt ≥ βi+1n

]
≤ e−

1
6
βi+1n

where the last inequality comes from Bernstein’s inequality applied to independent variables Zt.
Hence the Yt’s are unlikely to collide, which we cared about because the Yt’s are condition on the
previous value. For large enough βi+1 we can assume that

Pr
[∑

Yt ≥ βi+1n
]
<

1

nc
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for fixed constant c > 0. Precisely speaking, βi+1 needs to be Ω(log n/n) with appropriate constant.

Let Qi = I[Vi+1(t) ≥ βi+1n], then for βi+1 = Ω(log n/n) we have that

Pr[Qi+1] ≤ Pr
[
Qi+1 ∧Qi

]
+ Pr[Qi]

≤ Pr
[∑

Yt ≥ βi+1n
]

+ Pr[Qi]

≤ Pr[Qi] +
1

nc
.

Letting h∗ be the largest i such that βi = Ω(log n/n), by union bound with probability at least
1− n1−c, the condition Vi(t) ≤ βin holds for i = 1, . . . , h∗.

Till now, we proved that with high probability there exists h∗ of O(log log n) such that

Vh∗(t) < O

(
log n

n

)
. (1)

Then, we have to determine Pr[any ball gets height larger than h∗ + 1]. Observe that given (??)

the probability of ball put higher than h∗ would be bounded by O
(( log(n)

n

)2)
. Using this result we

have

Pr
[∑

Yt ≥ c
]
≤
(
n

c

)(
log n

n

)2c

≤
(
ne

c
· log2 n

n2

)c
<

1

nc/2

for large enough n.

Hence the max height is log(log(n)) +O(1) with high probability.

What’s E[max height]?

E[max height] ≤ h∗ + c+ Pr[maxh ≥ h∗ + c] · (max possible h)

≤ h∗ + c+
n

nc/2

≤ h∗ +O(1)
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