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1 Overview

In the last lecture, we solved a few puzzles about balls & bins and random walk.

In this lecture we first introduce the Hash table and Cuckoo Hashing. Then, we prove that Cuckoo
Hashing only needs O(1) time per insertion in expectation and O(1) time per lookup in worst-case.
We also discuss the “Universality” and k-wise independence of random Hash functions.

2 Hash table

Hash table is a very commonly used data structure which has two operations: Insert(key,value)
and lookup(key). In previous lectures, we studied the max-load of balls & bins problem, which is
closely related to the collisions of random hash functions. Hence, we summarize the known results
as follows:

• One choice Hashing

– Expected O(1) time per operation1.

– Worst case O
(

logn
log logn

)
time per operation.

• Two choices Hashing

– Expected O(1) time.

– Worst case O(log log n) time.

• Cuckoo Hashing

– Expected O(1) time per insertion.

– Worst case O(1) time per lookup.

3 Cuckoo Hashing

Cuckoo Hashing is an improvement over two choice Hashing. Let’s consider the cells of the Hashing
table as vertices in a graph. If an item is hashed to two cells, we draw an edge between those two

1Amortized time for insertion
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Figure 1: Cuckoo Hashing insertion.

vertices, since that item could be stored in either of those two cells. Also, we only store one item
per cell in this setup.In this way, the Hash table can be represented as a multi-graph.

Let n denote the number of vertices and m denote the number of edges (items). Further, we assume
m = n/100.

In the remaining part of this section, we’ll describe the algorithm of Cuckoo Hashing and we’ll
analyze its running time in the next section.

Lookup To find an item with key w in the Hashing table, we first compute its two hash values
h1(w), h2(w) and check the corresponding vertices v1, v2 in the graph. If one of them contains w,
then return that cell.

Insert We first compute the two hash values and check both vertices:

1. If either vertex is empty, place item there.

2. If both full, pick a side with item w′ and place w in that cell. Then, insert w′ again.

3. If get a cycle, rebuild the whole Hash table.

An example of insertion is shown in Figure 1.

4 Analysis

4.1 Lookup

For each lookup, we only check two vertices. Hence, the worst case time cost is O(1).

4.2 Insertion

There are two parts of time costs for insertion: (1) the time for moving items along the edges, and
(2) the time for rebuilding everything if there exists a cycle.
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We first analyse the second part. With random Hash functions, the graph becomes a random
multi-graph with n vertices and m edges. The probability of existing a cycle in a random graph is

P[∃ cycle] ≤
m∑
k=2

P[∃ length k cycle]

≤
m∑
k=2

(
n
k

)
· k!

2k︸ ︷︷ ︸
# k cycles

·

(
m(
n
2

))k

︸ ︷︷ ︸
Prob. of one k-cycle

≤
m∑
k=2

(
nk

k

)
·
(

4m

n2

)k

≤
m∑
k=2

1

k

(
4m

n

)k

≤ 8m2

n2
(The sum is dominated by the k = 2 term.)

<
1

100

Hence, the probability that there is a cycle in a random graph is bounded by 8m2

n2 . In Cuckoo
Hashing, if we have 100m cells to save m items, the probability of rebuilding the whole graph is
small.

Then, we consider the first part, which is the number of times we move items along the edges until
we find an empty cell. It’s easy to see that the expected insertion time is upper bounded by the
expected size of connected component (CC) in the graph. We’ll prove that the size of CC is small
for random graph.

Claim 1. In a random graph with n vertices and m edges, for any vertex u,

E[size of CC containing u] = O(1).

Before proving Claim 1, let’s consider the Erdős-Renyi model G(n, p) first. In this model, each edge
is included in the graph with probability p independently. Then, the size of connected component
in G(n, p) can be characterized by the Galton-Watson branching process [WG75]. For vertex u,
there are n − 1 possible neighbors, each of them with probability p. Then, for each v connected
with u, there are again n − 1 possible neighbors. In this process, we may count the same vertex
multiple times but this can only make the size larger. We can view this process as an infinite tree
and let C denote the expected size. Then, it’s not hard to write the following recursive formula:

C = 1 + (n− 1)p · C,

which gives C = 1
1−(n−1)p . For p = m

(n2)
, we have C ∼ 1

1− 2m
n

= O(1).

Now, let’s get back to the Claim.
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Proof of Claim 1. We can upper bound the size of CC as follows:

E[size of CC containing u] = 1 +
∑
v∈V

P[u ∼ v]

= 1 + (n− 1)P[u ∼ v] (u ∼ v denotes u is connected to v)

≤ 1 + (n− 1)
n−1∑
k=1

P[d(u, v) = k] (d denotes the length)

≤ 1 + (n− 1)
n−1∑
k=1

(
n− 2

k − 1

)
(k − 1)!

(
m(
n
2

))k

≤ 1 + (n− 1)
n−1∑
k=1

(n− 2)k−1
(

2m

n2

)k

· e

≤ 1 + (n− 1)

n−1∑
k=1

(
2m

n

)k

· e
n

≤ 1 + e
n−1∑
k=1

(
2m

n

)k

= O(1)

Then, we can combine these two parts together. Let T be the time for an insertion. Then, we have

E[T ] ≤ O(1) +
1

100
E[T ],

which means E[T ] = O(1). Therefore, expected time of Cuckoo Hashing’s insertion is O(1).

5 Random Hash Functions

To achieve the random graph, we need fully random Hash functions, which require too much
randomness. For alternative, we can use the “universal” Hash functions or k-wise independent Hash
functions, which can save randomness while having the same running time for Hashing algorithms.
We define them as follows:

Definition 2 (Universality). Let H be a Hash family of Hash functions h : U →M . H is universal
if for all x, y ∈ U ,

P
h∼H

[h(x) = h(y)] =
1

M
.

Definition 3 (k-wise independence). For the Hash family H defined above, it is k-wise independent
if for all x1, . . . , xk ∈ U , v1, . . . , vk ∈M ,

P
h∼H

[h(xi) = vi ∀i ∈ [k]] =
1

Mk
.
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It’s easy to see that 2-wise independence implies universality.

Consider the Hashing algorithms. For the standard one choice Hashing, we can use universal Hash
functions to get O(1) expected time. But in order to have worst case O( logn

log logn) time, we need to

use O( logn
log logn)-wise independent Hash functions. For Cuckoo Hashing, we can use O(log n)-wise

independent Hash functions to achieve the same running time as fully random hash functions. It
can also be shown that 5-wise independence is not enough.
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