
CS 388R: Randomized Algorithms, Fall 2021 September 30, 2021

Lecture 11: Fingerprinting

Prof. Eric Price Scribe: Nathaniel Sauerberg and Giannis Daras

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we talked about Routing. In this lecture we are going to talk about Fingerprinting.

Fingerprinting in the context of randomized algorithms is, roughly speaking, a technique to easily
compare two objects by comparing their hashes. When designing a fingerprinting algorithm the
task is to design a hash family H such that if we select a function h ∈ H, then for x 6= y, it is
also true that h(x) 6= h(y) with some decent probability. As we will see in this lecture, this idea
has very useful applications such as verifying the result of a matrix multiplication, testing if two
polynomials have all their coefficients equal and finding whether a string is a substring of a larger
string.

2 Matrix Equality Testing (Freivalds’ Algorithm [4])

Suppose that we are given the following decision problem: “For some matrices A,B,C ∈ Rn×n

verify whether A ·B = C.”.

One way to solve this problem would be to analytically compute the product of A,B and then
compare entry-wise A · B,C. A naive implementation of this idea would give time complexity
O(n3). The best known algorithm for matrix multiplication gives complexity O(nlog2 7) [1].

We will now show that there is a Randomized Algorithm, that can check if A · B = C in O(kn2)
time with error probability ≤ 1

2k
. To do so, we first prove the following lemma.

Lemma 1 (Upper bound on the probability of a random vector to be in the null-space of a matrix.).
Let W ∈ Rn×n. Let also r be a random vector, drawn uniformly from {0, 1}n. Then,

P[W · r = 0|W 6= 0] ≤ 1

2
. (1)

Proof. Let wT
1 , ..., w

T
n denote the rows of W . Since W 6= 0, there is a row of W that is non-zero.

Without loss of generality, assume that wT
1 is the non-zero row and w1j a non-zero element of that

row.

1

P[W · r = 0|W 6= 0] ≤ P[wT
1 · r = 0] (2)

= P

∑
i 6=j

w1iri

 + w1j = 0|rj = 1

 · P[rj = 1] + P

∑
i 6=j

w1iri = 0|rj = 0

 · P[rj = 0] (3)

= P

∑
i 6=j

w1iri

 + w1j = 0

 · P[rj = 1] + P

∑
i 6=j

w1iri = 0

 · P[rj = 0] (4)

=
1

2

P

∑
i 6=j

w1iri

 + w1j = 0

 + P

∑
i 6=j

w1iri = 0

 . (5)

Since we selected w1j to be a non-zero element of that row and we perform everything modulo 2,
the two probabilities sum to 1, i.e.

P

∑
i 6=j

w1iri

 + w1j = 0

 + P

∑
i 6=j

w1iri = 0

 = 1. (6)

Hence, we have that:

P[W · r = 0|W 6= 0] ≤ 1

2
. (7)

Algorithm We are going to use this lemma to develop our algorithm. Specifically, we want to
see if A ·B = C. Instead, we are going to check if

(A ·B)r = Cr ⇐⇒ (8)

(A ·B − C)r = 0 ⇐⇒ (9)

Wr = 0, (10)

for some r sampled uniformly from {0, 1}n and W = A · B − C and we are going to accept that
A ·B = C if W · r = 0 and reject it otherwise.

Error probability analysis Now, observe that the algorithm never has false negatives. In other
words, for any r ∈ {0, 1}n, if A ·B = C then also W · r = 0 trivially. Now, in case A ·B 6= C, then
from the Lemma, we have that P[W · r = 0|W 6= 0] ≤ 1

2 . We are going to repeat this process k
times and we will output 1 only if all the times W · r = 0. We denote with r1, ..., rk the sampled
vectors r.

Now, the probability of error in case A ·B 6= C is:

P[error] = P[W · r1 = 0 ∧W · r2 = 0... ∧ ...W · rk = 0|W 6= 0] ≤ 1

2k
. (11)

2

Time Analysis We can compute A ·B · r as A(B · r) which takes O(n2) time. Similarly, we can
compute C · r in O(n2) time. If we repeat the process k times to reduce the error probability to
1
2k

, then the running time becomes O(kn2).

3 Polynomial Identity Testing

The next application we examine is Polynomial Identity Testing. We consider the following ques-
tion: “Given degree d univariate polynomials P (x), Q(x) and a degree 2d univariate polynomial

R(x), is it true that P (x)Q(x)
?
= R(x)?”. A more general version of this problem is to examine if

a given univariate polynomial P (x) is everywhere equal to 0. We will focus on this general version
of the problem.

This simple question can be extremely hard to answer since the expressions P (x) can be very hard
to re-write in the standard form. Instead, we are going to exploit a useful fact about polynomials.

Theorem 2 (Fundamental Theorem of Algebra). Any univariate polynomial of degree d, has at
most d unique roots.

Attempt 0: Deterministically, we could compute the value of a polynomial P at any set of d+ 1
points. If P is the zero polynomial, it will of course be 0 at every chosen point, and if P is not the
zero polynomial, it has at most d roots so will be nonzero at at least one of the chosen points. Can
we speed this up with randomization?

Attempt 1: We are going to pick c1 random elements from a set S with |S| = c2 · d, let’s say
S = [c2 · d].

If all of them evaluate P (x) to 0, then we are going to output that the polynomial is the zero
polynomial, otherwise we are going to output that it is not. Observe that there is zero probability
that the algorithm will output that the polynomial is not the zero polynomial if it is (based on
Theorem 2). In other words, the algorithm does not have any false negatives.

Now we will analyze the probability of picking a root for a single query. The worst case is when the
set S that we are picking our queries from contains all the roots. In that case, the probability of
choosing one root is at most 1

c2
. By repeating this procedure c1 times we can make the probability

of failure of our randomized algorithm arbitrarily small. For failure probability 1 − δ, we need to
do logc2 1/δ queries.

The problem with this attempt is that P (d) can be ≈ (c2d)d, i.e. we need to store d log c2d bits to
represent this number.

Attempt 2: We use the aforementioned idea, but this time, we are operating on a Finite Field
Fp for a prime p ≥ 2d. For such fields, there is a similar Theorem to Theorem 2 and the analysis
is very similar.

Extending to multivariate polynomials We can extend this idea for multivariate polynomials.
To do so, we are going to use the following lemma.

3

Lemma 3 (Schwartz–Zippel). Let P be a non-zero polynomial of n variables and total degree d ≥ 0
over a field Fp. Let S be a finite subset of Fp and let r1, r2, ..., rn be selected at random independently
and uniformly from S. Then

P[P (r1, r2, . . . , rn) = 0] ≤ d

|S|
. (12)

Proposition 4. Let x = (x1, ..., xn) uniformly drawn from Fn
p and P be an n variable polynomial

of degree at most d over the field Fn
p with p > 2d. Then,

P[P (x) = 0] ≤ d

p
. (13)

We will now see how this Proposition can be useful to find quickly whether a string is a substring
of a larger string. To do so, we will introduce the String Matching problem.

4 String Matching

Suppose we have a small string, and we want to check whether its a substring of a much larger
string. For example, we might be doing a CTRL-F search in a large document. We’ll focus on the
decision version of the problem.

Problem:

Given: an n-bit string a and an m-bit string b, where n ≥ m

Output: whether b is a substring of a

The naive deterministic algorithm is to compare every length m substring of a to b, which takes
O(nm). Can we do better with fingerprinting? One way to speed this up is to compute hashes of
the substrings and compare the hashes rather than the full strings. Let’s define st to be the t-th
substring of length m of a, so st = atat+1 · · · at+m−1.

Algorithm:

• compute h(b)

• compute h(s1), h(s2), . . . h(sn−m+1)

• if h(b) matches the hash of a substring, either return ”yes” (and be correct with good prob-
ability) or compare the full strings (for a Las Vegas style algorithm).

The key question now becomes how to define the hash functions.

4.1 Rabin-Carp Algorithm [2]

We will now show how we can use the Polynomial Identity Testing analysis and Rabin-Carp Algo-
rithm to come up with an elegant solution to the String Matching problem.

4

We define a polynomial corresponding to any length m substring t = (t1, ..., tm) by Pt(x) =∑m
i=1 tix

m−i. Then, following the previous section, we can compare any two strings t and r by
comparing Pt(x) and Pr(x) mod some prime q and for a randomly chosen x ∈ [q].

The overall algorithm is to pick a prime q and a random x ∈ [q]. Then, we compare Pb(x) to Pst(x)
for every length m substring st of a. We output that there is substring match if (Pb(x) − Pst(x)
mod q) = 0 for some st, and that there is not a substring match otherwise.

Each pairwise comparison succeeds with with probability at least 1 −m/q, where the probability
is over the random choice of x. Therefore, if we take q to be a prime on the order of mn2, we can
get success with high probability even after union bounding over the O(n) substrings of a. Note
that these comparisons are not independent since each one depends on the same random choice of
x, but that’s ok since we are union bounding.

One important detail remains: how to actually compute the Ps(x). We’ve defined Ps so that we
can quickly compute each next value from the previous one, ie Psi(x) from Psi−1(x). For example:

Ps2(x) =
m+1∑
i=2

aix
m−i+1 = am+1 + xPs1(x)− a1xm−1

Recall that each Psi(x) is just a number mod q, not a polynomial, since we’re evaluating them for
some specific x. Therefore, we can compute each Psi(x) from Psi−1(x) in constant time. Since these
are numbers mod q, storing them takes only log q bits, which is fine since q is poly(n,m).

4.2 An Alternative Algorithm

The Rabin-Carp algorithm picks a random value x at which to compare the polynomials, while the
prime q just allows the computations to be faster and doesn’t need to be random. Our alternative
approach flips this.

We can view b and the substrings s of a as binary numbers with values up to 2m − 1. Then, we
can pick a random prime p and compare b and s mod p. We get the same 1-sided error as before:
if b = s, then they they are equal mod p, but if b 6= s, there is still some chance they’re equal mod
p. If we let c = b− s, we’re trying to check whether c = 0 mod p, so the relevant question is how
many primes p divide c.

If we write c as a product of primes, each prime must be at least 2, so the product of k primes is
at least 2k. Therefore, since c < 2m, no more that m primes can divide c1. Hence, if we draw p
from a set of at least mn2 primes, we’ll succeed with probability 1 − 1/n2 on each substring, and
then union bounding over the n substrings we still succeed with high probability. To get a set of
mn2 primes, we need to go up to primes of size Θ(mn2 log(mn2)) due to the density of the primes
in the integers being about (log n)/n, as discussed before.

Note that we can do the same type of rolling computation of the s values as before. In addition,
this algorithm assumes we can generate random primes of around a certain value. We will now
show how it is possible to do that.

1This is a loose bound, and tighter analysis might be able to save a log factor.

5

5 Primality Checking

The most straightforward way is to generate a random integer around the desired value, check if
it’s prime, and if not repeat until you find a prime. Note that the density of primes in the integers
is Θ(lognn). Therefore, to generate a prime around size L, we’ll need to check roughly logL integers
in expectation before we find a prime, which isn’t too high of a cost.

Our primality testing algorithms will rely on some number theory theorems that we won’t prove.

5.1 Fermat Primality Test

Theorem 5. (Fermat’s Little Theorem) If p is prime, then ap−1 = 1 mod p for any a 6= 0 mod p.

This is the first theorem. Over the integers, 1 and −1 are the only square roots of 1. This theorem
basically says that this also holds if we are working over the integers mod p.

If we have a number n and we’d like to check if n is prime, the most obvious thing to do is to check
if Fermat’s little theorem holds. If it fails, then we know n is not prime.

Fermat Primality Test:

• Given an integer n

• Pick a uniformly at random from {1, . . . , n− 1}

• Check if an−1 = 1 mod n

• If yes, return “(probably) prime”

• If no, return “composite”

Note that our algorithm always correctly identifies primes as prime, but sometimes it will also
think composite numbers are prime. The algorithm would work well if composite numbers are
rarely thought to be prime. In other words, we’d like to claim that, for any composite number,
many choices of a will have an−1 6= 1 mod n and so will lead to n being identified as composite.

Unfortunately, there exist composite numbers called Carmichael numbers that will cause our test
to fail for any relative prime base a. In other words, the test succeeds only if we pick an a that
divides n, so for Carmichael numbers the Fermat test does so no better than randomly looking for
divisors of n.

How do we get around this problem? We can add another test, with the hope that composite
numbers that always pass the Fermat primality test will usually fail our other primality test.

5.2 Miller-Rabin Primality Test [3] [5]

Since we’re trying to check if n is prime, we can assume that n is odd (if it was even, we’d just
need to check that it wasn’t 2). Then, let’s factor out as many powers of 2 from n− 1 as we can,

6

so write n− 1 = 2qm for some odd m. Applying Fermat’s little theorem to this form of n− 1 tells
us if n is prime, then for any a 6= 0 mod n, an−1 = a2

qm = 1 mod n.

So if n passes Fermat’s test, then we’ve picked some a where a2
qm = 1 mod n. We’d like to have

another test that composite numbers passing Fermat’s test will fail. This is where our second
theorem comes in.

Theorem 6. If p is a prime and a2 = 1 mod p, then a is either 1 or −1 mod p.

Following the theorem, if
√
a2qm = a2

q−1m is not 1 or −1, we know for sure that n is not prime.
Additionally, if a2

q−1m = 1, then we can apply the theorem again and check the value of a2
q−2m.

We can continue this process until we get the first non-1 value. If the value is not −1, we know for
certain n is composite, and if it is −1, then we’re still uncertain and will guess that n is prime.

Miller-Rabin Primality Test:

• Given an integer n

• Pick a uniformly at random from {1, . . . , n− 1}

• Write n− 1 = 2qm for odd m

• If a2
qm 6= 1, return “composite”, else continue:

• Let i = 0

– If a2
q−im mod n = 1, increment i

– Else, if a2
q−im mod n = −1, return “prime”

– Else a2
q−im mod n 6∈ {1,−1} so return “composite”

This algorithm has the same one-sided error as before: when we return composite, we are sure n is
composite, but when we return prime, n are not entirely sure. Fortunately, it turns out that when
n is composite, it usually can’t fool our algorithm. That is, for any composite n, the first non-1
value of in the sequence a2

q−im mod n will also not be −1 with probability at least 3/4 (where the
probability is over the random choice of a).

Therefore, this algorithm has only constant failure probability and can be repeated with other
choices of a to get arbitrarily low failure probability.

Historical Note: This algorithm was first given by Miller in 1976 [3] in a version whose correct-
ness relied on the Reimann Hypothesis. In 1980, Miller [5] improved it to be correct unconditionally.

6 A Probability Puzzle

6.1 The puzzle

We finished class by working on the following probability puzzle about sequences of coin flips.

Suppose we flip fair coins until the number of heads minus the number of tails is either −10 or 100.
What is the probability of ending at −10?

7

Notationally, we can let Xi ∈ {±1} be the outcomes of the independent, random coin flips. We’ll
have Yi be the sum of the first i flips, so Y0 = 0 and Yi = Yi−1 + Xi. The question is then the
probability that Yi ever reaches −10.

Since we stop flipping coins when Yi reaches −10 or 100, we’ll define the Y s to stop changing at

that point. That is, we’ll define Yi =

{
Yi−1 if Yi ∈ {−10, 100}
Yi−1 +Xi otherwise

.

6.2 The Expectation Solution

They key observation is that the expectation of Yi is always 0 (for any i) since it is just the sum
of coin flips that each have expected value 0. Also, with probability 1, Yi will eventually reach one
of the endpoints and stop (recall that the standard deviation of Yn is Θ(

√
n). Therefore, as n goes

to infinity, the expectation of Yn becomes dependent only on the two endpoint outcomes:

lim
n→∞

E[Yn] = 100P[Yn = 100] +−10P[Yn = −10]

Then, letting p be the probability that Yi reaches −10, we can write E[Yn] = 0 = 100(1−p) +−10p
and then solve to get p = 10/11.

One potentially surprising implication of the result is that the probability of reaching an
endpoint depends only on the ratio of the endpoints. For example, the probability of
reaching −100 before 1000 and the probability reaching −1 before 10 would both also be 10/11.

6.3 The Recurrence Solution

We can get the same solution by solving a recurrence. Let f(i) be the probability that the sequences
reaches −10, starting from a time t where Yt = i. Then we know that f(−10) = 1 and f(100) = 0.
For other i, we can just condition on the outcome of the second coin flip to write f(i) = 1/2f(i+
1) + 1/2f(i− 1). It turns out that f(0) = 10/11.

References

[1] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix mul-
tiplication. Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
page 522–539, Jan 2021.

[2] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, March 1987.

[3] Gary L. Miller. Riemann’s hypothesis and tests for primality. In Proceedings of the Seventh
Annual ACM Symposium on Theory of Computing, STOC ’75, page 234–239, New York, NY,
USA, 1975. Association for Computing Machinery.

[4] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge university press,
1995.

8

[5] Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980.

9

