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1 Overview

In the last lecture we looked at fingerprinting algorithms, which can be used to check if 2 polynomials
are equal, if the result of matrix multiplication is correct or if a string contains a particular substring.

In this lecture we will look at shortest path algorithms in graphs and propose a randomized algo-
rithm for all pairs shortest path that is better than deterministic algorithms like Floyd-Warshall
[FL62, WA62].

2 Probability game

Consider the following game: n students in the class should close their eyes and decide whether or
not to raise their hands. If more than one student raise their hands the whole class loses. Let’s say
each student raises a hand with probability 1/n, then

P (only one student will raise their hand) = n · (1− 1/n)n−1 · 1/n ' 1/e (1)

The above algorithm assumes that everyone knows the value of n. If no one knows the actual value
and only an upper bound N , then everyone can make a guess k for n then the probability of success
will be n · (1− 1/k)n−1 · 1/k ' (n/k) · e−n/k. if the guess k is of the same order as n then we have
a constant probability of success. So we can sample the guess k from the set

{
20, 21, . . . , 2logN

}
,

which will reduce the success probability down by log(N). So the overall probability of success will
be Ω {1/ log(N)}. This randomized algorithm will be used later in the lecture.

3 Deterministic shortest path algorithms

Let m
def
= number of edges in a directed graph, n

def
= number of vertices, the worst case running

times for different algorithms solving single source shortest path problem are as follows.

1. For unweighted graphs:

BFS - O(n + m)

2. For weighted graphs:

Dijkstra [DI59]- O(m + n log n)

Bellman Ford - O(mn)
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For all pairs shortest path problem - Floyd-Warshall [FL62, WA62] - O(n3)

4 Shortest distance between all pairs of vertices

Repeated matrix multiplication of adjacency matrix is used to determine the distance between
every pair of vertices of a graph. We will consider that the cost of matrix multiplication of 2 (n, n)
matrices is O(MM(n)).

4.1 Using repeated matrix multiplication

Suppose A is the adjacency matrix of a graph G, where Aij is 1 if there is an edge between vertices
i and j, else 0. This graph assumes self loops, i.e diagonal of A are all ones. Let G2 be the graph
we get by using non-zero entries of A2 as edges. Each entry of the matrix multiplication A2

ij will
carry the number of paths of length atmost 2 between vertices i and j in the graph. Multiplying k
times would result in entries Ak

ij carrying the number of paths of length atmost k between i and j.

Let D be the matrix where Dij is the shortest distance between vertices i and j. Suppose that we
want to estimate D′, which is a rough estimate of D to a factor of 2, specifically, D′ij ∈ [Dij , 2Dij ].

We can compute A, A2, ... A2logn and determine D′ij as

D′ij = minimum k such that Ak
ij > 0

Since there are log(n) matrices to compute, this can be done in O(MM(n) log(n)) time, where

MM(n)
def
= matrix multiplication time. However, this method only gives us a matrix D′ that is

rough estimate of D.

4.2 Resolving parity

G

G2

Figure 1: Example of G and G2

To determine D, a better estimate for D′ is first derived. Lets consider a toy graph (like the one
in Figure 1) G and it’s corresponding G2. We can compute the values of A and A2. Let D′ be the
true distance between distance between 2 vertices in G2. We can make the following observation
about D′

D′ij = dDij

2
e
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When Dij is even, D′ij =
Dij

2 trivially. When Dij is odd, parity needs to be accounted for during
division. To do this, we can look at the neighbours of a vertex j (N(j)) to determine the value of
Dij . For a vertices s, u, we can observe that

if Dsu is even, ∀v ∈ N(u) D′sv ≥ D′su

if Dsu is odd, ∃v ∈ N(u) such that D′sv = D′su − 1

We can test this condition using matrix multiplication (D′A) to sum up the values of D′ over the
neighbourhood of a vertex

(D′A)su =
∑
v

D′svAvu =
∑

v∈N(u)

D′sv

• if Dij is even, (D′A)ij ≥ |N(j)|D′ij

• if Dij is odd, (D′A)ij ≤ |N(j)|D′ij − 1

Using this, the value of Dij mod 2 can be estimated, which gives the value of D as

D = 2D′ − (D mod 2)

The complexity of this will be O(MM(n) log(n))

5 Randomized Shortest Path Algorithm [SE92]

Given the matrix of true distances D, we define an algorithm to find the path between the nodes.
A path matrix P is defined as follows

Pij = k such that Dij = Dik + Dkj (2)

Multiple possible k can exist. We will first look at a case where k is unique.

5.1 Simpler Case: Directed Tripartite Graph

Consider the case where the graph is a directed tripartite graph (Figure 2). This graph has 3
sets of vertices X, Y and Z, with edges running only from X to Y and from Y to Z. Let A and
B be the adjacency matrices for these 2 sets of edges. This fits in neatly with our definition from
P from above, as all the intermediate nodes k will lie only in Y . To find whether a path exists
between 2 vertices i and j in X and Z respectively, the product AB can be computed. ABij being
1 means that a path is present between i and j and 0 means that a path is absent. To find the
actual path between the 2 vertices, a new matrix B′ is defined as follows

B′kj = kBkj

AB′ij , gives the index of the node in Y that connects i and j.
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Figure 2: Directed Tripartite Graph

If k there are r possible values of k, a small modification is made to B′ so that we get the index of
one of the solutions of k.

B′kj = kBkjZk

where P[Zk = 1] = 1
r . This algorithm will have a constant chance of finding the solution. Similar

to the discussion in Section 2, if we do not know the number of solutions r, we can keep guessing
the value of r and repeat this algorithm logn times to get the correct intermediate node.

The overall complexity for these graphs will be O(MM(n) log2(n)), because the matrix exponen-
tiation step has a O( 1

log(n)) chance of correctness and the intermediate node finding step has a

O( 1
log(n)) chance of correctness.

5.2 Generalized Solution

The original problem on a dense graph can be reduced to the tripartite graph problem (Section
5.1), by splitting the path finding into 2 parts. If we are trying to find the path between 2 vertices
i and j at distance L (Dij = L), we can split this into 2 parts, one of length L−1 and one of length
1.

Dij = Dik + Akj

where Dik = L−1 and Akj = 1. The algorithm from Section 5.1 can be used to solve this case, with
the second transition matrix B from that algorithm being replaced by B(L−1). This is a binary

matrix with B
(L−1)
ij being 1 if there exists a path of length L − 1 between i and j. However, to

compute B(L−1), we will need to recursively compute B(L−2). This will involve recursion of depth
O(n), and due to this, the complexity of this method will increase by a factor of n compared to the
tripartite graph problem.

Now we’ll come up with a better solution. Since we’re considering nodes k on the i to j path
that are a distance 1 away from j, we call k as the successor of (i, j). We define a matrix S as
the successor matrix such that Sij contains the successor k of the i to j path. We are effectively
solving for the successor matrix S. We observe that all neighbours k of j will have Dik belonging
to {Dij − 1, Dij , Dij + 1}. Also, all nodes k that can be potential successors must have Dik ≡
Dij − 1 mod 3.
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Based on this intuition, all we need to do to find the successor matrix S is to run the algorithm from
Section 5.1 3 times, each time only considering transitions that have the same value of Dik modulo 3.
For each of the 3 runs (s = 0, 1, 2), we define the B matrix as follows

Bs
ij =

{
1 Dij mod 3 = s

0 otherwise

and run the algorithm from Section 5.1 with A and Bs. This way, we no longer have a dependency
on the length L of the path between the 2 nodes and are still able to consider all the possible
transitions between vertices to determine the successor matrix. Since this is just a constant factor,
the complexity remains the same as Section 5.1 O(MM(n) log2(n)).
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