
CS 388R: Randomized Algorithms, Fall 2021 October 14, 2021

Lecture 14: Matchings

Prof. Eric Price Scribe: Akash Doshi, Nikos Mouzakis

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we discussed sampling algorithms, as well as how to use sampling to solve
problems such as finding the median in a given list of numbers.

In this lecture we will introduce matchings, a few deterministic algorithms to find the matching
followed by deterministic and randomized algorithms for matchings in d-regular bipartite graphs.

2 Matching in Bipartite Graphs

Consider a bipartite graph with an equal number of vertices, n, on both sides. We want to match
left vertices to right vertices, with each vertex on the left matched to ≤ 1 vertex on the right. How
many vertices can you match? If you can match all n vertices in L, it is called a perfect matching.

Figure 1: Bipartite Matching using the Ford-Fulkerson Algorithm

Observe in Fig. 1 how we can convert the bipartite graph into a max flow problem by the approriate
addition of a source node s and sink node t. Solve the max-flow problem, using the Ford-Fulkerson
algorithm [FF56]. With one BFS, you can obtain one flow in O(m) time, and you have to repeat
this for a maximum of n vertices, giving a total time complexity of O(mn).

Other algorithms for finding perfect matchings with similar time complexities:

• Hungarian Algorithm [MU57]: Time Complexity O(n3) - One advantage of this algorithm is
one can assign a cost to the edges, and find a min-cost perfect matching.

• Hopcroft-Karp Algorithm [HK73]: Time Complexity O(m
√
n).

1

Today we will be looking at algorithms to find perfect matchings on d-regular graphs i.e. each vertex
has degree d. The graphs will continue to remain bipartite, unweighted with an equal number of
vertices in L and R. More specifically, we will be looking at two algorithms:

• Gabow-Kariv [GK82]: Time Complexity O(m). Designed only for the special case when
d = 2K .

• Goel - Kapralov - Khanna [GKK13]: Expected time complexity of O(n log n).

3 Hall’s Theorem

Theorem 1. Perfect matching exists in a bipartite graph ⇐⇒ ∀ S ∈ V , |N(S)| ≥ |S|, where
N(S) denotes the set of vertices that are neighbours of S.

Proof: =⇒ : Trivial (S has to match within N(S)).

⇐: The claim we are trying to prove is that if there is no perfect matching, ∃S s.t. |N(S)| < |S|.
Observe in Fig. 2 that if we ran [FF56], we would get some edges going backward (because we
matched them) and some edges going forward (because we haven’t matched them). In other words,
when Ford-Fulkerson [FF56] terminates, there will be no s− t path in the residual graph.

Figure 2: Proof of Halls theorem

min s− t cut = |cut given by reachable vertices|

= (n− |L|) + |R|+ |N(L) ∩R|
= (n− |L|) + |R|+ |N(L)| − |R|
= n + |N(L)| − |L|

Now we know the final expression is < n, because there isn’t a perfect matching. Hence, we obtain
that for S = L, |S| > |N(S)|, proving the theorem.

Lemma 2. d-regular bipartite graphs always have perfect matchings.

Proof: For any S ∈ left, there are d|S| edges from S to N(S), and d|N(S)| edges from N(N(S))
to N(S). Then, observe that N(N(S)) ⊇ S. Hence d|S| ≤ d|N(S)|, which implies |S| ≤ |N(S)|,
proving the criteria of Hall’s theorem, and establishing the existence of a perfect matching.

2

4 Perfect Matching in d-regular bipartite graphs

This algorithm is from [GK82]. Given that d = 2K :

• Construct Eulerian tour (DFS type algorithm) at each connected component.

• Orient edges by whether path goes ← or → on them.

• Recurse on → edges (d/2- regular graph with m/2 edges).

Running time: O(m + m/2 + m/4 + m/8 . . .) = O(m).

Let us now consider some possible randomized algorithms for matching:

• Randomly pick an edge and add it to the matching. Drawback: In a complete graph, it can
take O(n2) time to find the last edge to complete the matching.

• Go to one of the unmatched vertices and pick a random edge from there. Drawback: As
shown in Fig. 3, if I pick the edges shown initially, I cannot find a matching.

Figure 3: No perfect matching possible.

5 O(n log(n)) Randomized matching for d-regular bipartite graphs

Another idea for a randomized algorithm for matching, due to [GKK13], is to use a randomized
version of the Ford-Fullkerson algorithm on the s−t flow construction. Specifically, instead of using
DFS or BFS to find an augmenting path, we will use a random walk. The intuition is that if there
are lots of short paths, a random walk will find an augmenting path very fast.

More specifically, we can quantify this with the following lemma:

Lemma 3. In a d-regular bipartite graph on n vertices on each side, if the residual graph has k
unmatched vertices, then the expectation of the length Tk of the random walk until an augmenting
path is found, is bounded by E[Tk] ≤ O(nk).

Using this lemma we can bound the expectation of the total number of steps by E[
∑

Tk] =
∑ n

k =
O(nlog(n)).

Proof. We consider an intermediate stage of the algorithm, with k unmatched vertices on each side.

3

Figure 4: Example of residual network during the algorithm. Back-edges and forward edges are in
red and blue, respectively.

The sets Xm, Ym denote the sets of matched vertices on each side of the bipartite graph. Xu, Yu
denote the sets of unmatched vertices. By assumption, |Xu| = |Yu| = k. Moreover, M(x) =
y ∧M(y) = x if x ∈ Xm, y ∈ Ym are matched.

Let b(v) denote the expected number of back-edges in the random walk beginning from node v,
until a node in Yu is reached. Then the expected length of the random walk from S to T is
E[Tk] = 2b(S) + 2 = 2(1k

∑
x∈Xu

b(x)) + 3, since the first step of the random walk can only pick
nodes in Xu.

By the definition of b(v), we have the following equations:

b(y) =

{
0 if y ∈ Yu
1 + b(M(y)) if y ∈ Ym

(1)

b(x) =

{
1
d

∑
y∈N(x) b(y) if x ∈ Xu

1
d−1

∑
y∈N(x)\M(x) b(y) if x ∈ Xm

(2)

This is because from an unmatched node in Xu, the random walk can visit any of its neighbors
next, while for an already matched node, it can visit every one of it’s neighbors except the one that
it is already matched with.

Rewriting (2), we get for x ∈ Xu, d ∗ b(x) =
∑

y∈N(x) b(y), and for x ∈ Xm, (d − 1) ∗ b(x) =∑
y∈N(x) b(y) − b(M(x)) =

∑
y∈N(x) b(y) − 1 − b(x) ⇐⇒ d ∗ b(x) + 1 =

∑
y∈N(x) b(y). More

succinctly, ∀x, d ∗ b(x) + 1x∈Xm =
∑

y∈N(x) b(y).

Summing for every x, we get d∗
∑

x∈X b(x)+ |M | = d∗
∑

y∈N(x) b(y) = d∗(|M |+
∑

x∈Xm
b(x)) =⇒∑

x∈Xu
b(x) = (d−1)∗|M |

d . Hence, 1
k

∑
x∈Xu

b(x) = (d−1)∗(n−k)
d∗k ≤ n

k , which means E[Tk] ≤ 2 ∗ n
k + 3 ∈

O(n/k).

4

6 Online bipartite matching

In the online version of this problem, the vertices arrive in an unknown sequence, and the algorithm
must match each arriving vertex irrevocably the moment it arrives. The adversary can change the
sequence depending on the choices of the algorithm so far.

We can show that any deterministic algorithm can only achieve up to a 1/2-approximation ratio
compared to the optimal matching.

Lemma 4. Any deterministc algorithm for online bipartite matching can achieve at most 1/2-
approximation ratio.

Proof sketch. The adversary first provides vertex A as in Figure 5:

Figure 5: Initial vertices in sequence

Then, depending on whether the algorithm chose to match A with B or C, the adversary provides
vertex D as in Figure 6.

Figure 6: Next vertex in sequence

In both of these case the algorithm only manages to output a matching of size 1, while the optimal
matching is of size 2.

In the next class we are going to discuss how to use randomization to get past this bound.

References

[FF56] Ford Jr, L. R., & Fulkerson, D. R. Solving the transportation problem. Management
Science, 3(1): 24–32, 1956

[MU57] Munkres, J. Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5(1): 32–38, 1957

5

[HK73] Hopcroft, J. E., & Karp, R. M. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4): 225–231, 1973

[GK82] Gabow, H. N., & Kariv, O. Algorithms for edge coloring bipartite graphs and multigraphs.
SIAM journal on Computing, 11(1): 117–129, 1982

[GKK13] Goel, A., Kapralov, M., & Khanna, S. Perfect Matchings in O(n log n) Time in Regular
Bipartite Graphs. SIAM Journal on Computing, 42(3): 1392–1404, 2013

6

