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1 Overview

In the last lecture, we discussed the matching problems in bipartite graphs, especially the perfect
matching in d-regular bipartite graphs. We introduced the online bipartite matching problem at
the end of last lecture.

In this lecture, we will study different approximation algorithms for online bipartite matching:

- a greedy deterministic algorithm gives 1
2−approximation and no deterministic algorithm can

provide a better guarantee,

- an intuitive randomized algorithm gives (12 + o(1))−approximation in the worst case,

- a randomized algorithm given by Karp, Vazirani, and Vazirani [KVV90] achieves an expected
approximation ratio of 1− 1

e .

2 Introduction

Given a bipartite graph G = (U, V,E) with n left vertices U and n right vertices V . We can think
U as “customers”, V as “merchants”, and edges E exist between merchants and the customers they
would like to advertise to. The online matching for this bipartite graph is the following:

• The merchants V are known in advance while the customers U come in one at a time (the
corresponding edges are only revealed after a customer arrives).

• Once a customer u ∈ U and its edges come in, we have to find which merchant from V to
match u. Note that we can’t go back and make changes.

Our goal is to match as many vertices as possible in this online setting, i.e. we want our online
algorithm to perform as close to an offline algorithm, with full information, as possible. To measure
the performance of an online algorithm A in comparison to the optimal (offline) algorithm, we use
competitive ratio.

Definition 1 (Competitive Ratio). Given an online bipartite matching algorithm A, the approxi-
mation ratio is defined as

R(A) = lim inf
I

E[|A(I)|]
|OPT (I)|

, (1)
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where I is the input instances (bipartite graph and arrival order of customers), A(I) is the matching
of algorithm A, and thus OPT (I) is the matching of the optimal offline algorithm, i.e. maximum
matching.

3 Deterministic greedy algorithm

Let us consider the following simple greedy algorithm at first. We fix some ranking on the mer-
chants and whenever a customer (left vertex) u arrives, match u to the highest priority unmatched
merchant in u’s neighborhood list N(u).

Proposition 2. The competitive ratio of the greedy algorithm is at least 1
2 .

Proof. Given a bipartite graph G = (U, V,E), let MG be the matching of the online greedy algo-
rithm, OPT be the optimal offline matching (i.e. maximum matching). For any vertex u ∈ U ∪ V ,
define αu := 1{u is matched in MG}. It is easy to observe that 2|MG| =

∑
u∈U αu +

∑
v∈V αv.

Now we claim that ∀(u, v) ∈ OPT , αu + αv ≥ 1. On the contrary, suppose αu = αv = 0 and
(u, v) ∈ OPT , this means that u and v are not matched in MG but there is an edge connecting
them, which contradicts the greedy algorithm property. Thus,

|OPT | =
∑

(u,v)∈OPT

1 ≤
∑

(u,v)∈OPT

αu + αv ≤
∑
u∈U

αu +
∑
v∈V

αv = 2|MG|. (2)

By Equation 1, the competitive ratio of the greedy algorithm is at least 1
2 .

We can show that any deterministic algorithm for online bipartite matching has the competitive
ratio upper bounded by 1

2 .

v1

v2

u1
e1

e2

(a)

merchantscustomers

v1

v2

u1

u2

(b)

v1

v2

u1

u2

(c)

if c
ho
ose

e1

if choose e2

Figure 1: Adversary input for deterministic algorithm.

Proposition 3. For any deterministic algorithm of online bipartite matching, the competitive ratio
is at most 1

2 .

Proof. Consider a 2 customers and 2 merchants matching problem, suppose the first customer u1
is arrived and it has connections to both of the merchants (see Figure 1(a)). If the deterministic
algorithm chooses e1 (i.e. customer u1 is matched with merchant v1), the adversary can construct
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the input for the 2nd customer u2 as the graph shown in Figure 1(b). Otherwise, if customer u1 is
matched with merchant v2, the adversary can construct the input for the 2nd customer u2 as the
graph shown in Figure 1(c). In both cases, u2 can not be matched, but the optimal matching can
match both of the two customers, therefore the competitive ratio for any deterministic algorithm
is no more than 1

2 .

4 Intuitive randomized algorithm

In section 3, we introduced a deterministic greedy algorithm which fixes a global ranking on the
merchants. What if instead, whenever a customer arrives, we randomly pick a merchant in the
customer’s neighborhood? This can be viewed as randomly assigning each customer its own ranking
of the merchants.

Unfortunately, this intuitive randomized algorithm achieves an expected approximation ratio in the
worst case approaching 1

2 as n grows large, so it does not improve on the deterministic algorithm
by much.
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Figure 2: An example of the adversary input with 8 customers and 8 merchants for the naive
randomized algorithm.

Proposition 4. The competitive ratio of the intuitive randomized algorithm is at most 1
2 + o(1).

Proof. We first construct a bipartite graph G = (U, V,E) with |U | = |V | = n. Assume that
the ith arrived customer (left vertex) is ui. Customer ui and merchant vi are connected for all
i ∈ [n]. In addition, the first n

2 customers are fully connected to the second half of merchants
vn/2+1, vn/2+2, · · · , vn. A sketch of such construction for n = 8 is presented in Figure 2.

It can be observed that there is a perfect matching in such construction and thus |OPT | = n.
For any customer ui (i ≤ n

2 ), define Ei := # of unmatched merchants connected to ui. It’s easy
to observe that at most i − 1 of the second half merchants are matched before ui arrives. Thus
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Ei ≥ n
2 + 1− (i− 1) = n

2 − i+ 2. Therefore, for the first half of customers, we expect

E[# of ui not matched with vi (i ≤ n/2)] =

n
2∑

i=1

1− P[ui matched with vi]

=

n
2∑

i=1

1− 1

Ei

≥

n
2∑

i=1

1− 1
n
2 − i+ 2

=
n

2
−

n
2
+1∑

j=2

1

j

≥ n

2
− log

(n
2
+ 1
)
. (3)

Let MI be the matching found by the intuitive randomized algorithm, then

E[|MI |] ≤ n− E[# of ui not matched with vi (i ≤ n/2)] ≤ n

2
+ log

(n
2
+ 1
)
. (4)

Since |OPT | = n, the competitive ratio of the intuitive randomized algorithm is at most 1
2+o(1).

5 Ranking algorithm

In this section we introduce the randomized online bipartite algorithm with ranking developed
by [KVV90]. This algorithm has an approximation ratio better than 1

2 . At the beginning of the
algorithm, we assign a ”rank” to each merchant. This rank would incorporate consistency in our
algorithm so it would work better than the naive algorithm in the previous section. Let σ be a
permutation on [n]. The KVV algorithm runs as follows:
(1) Randomly generate a permutation σ on all the merchants.
(2) When a customer comes in, assign they to the merchant v with minimal rank σ(v).

Before we analyse this algorithm, let’s first introduce some notations. Let A(G, π, σ) denote the
KVV algorithm on input graph G (offline), customer arrival order π and merchant rank permuta-
tion σ. The three parameters G, π and σ determine the output of the algorithm. Let U denote the
set of all customers and V denote the set of all merchants. We use u to denote a customer and v to
denote a merchant unless mentioned otherwise. WLOG, when analysing the algorithm, we assume
there always exists a perfect matching M (the worst approximation ratio always appear in a graph
with perfect matching). We say a customer u is matched to merchant M(u) and a merchant v is
matched to a customer M(v) by this perfect matching. We introduce a few lemmas to facilitate
our proof.

Lemma 5. Let H = G− {v} where v ∈ V . Let πH and σH denote ordering π and σ restricted to
H respectively. Then A(H,πH , σH) = A(G, π, σ) + augmenting path of increasing (σ, π).

Proof. After the merchant v is removed, the customer M(v) will not be matched to v, but some
other merchants with higher rank, let’s call it u. Then the customer M(u) with rank higher than
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M(v) will be forced to match with a merchant with rank higher than u. This process will continue
when no more matching is possible and this gives an augmenting path consisting of increasing order
merchants and customers.

Lemma 6. Let u ∈ U and v = M(u). If v is unmatched in A, then u is matched by A to some v′

such that σ(v′) < σ(v).

Proof. This lemma is trivial by the matching mechanism of the algorithm.

5.1 Original proof

Now we present a critical lemma that will essentially prove the correctness of this algorithm. The
lemma presented here is correct but its proof in the original paper [KVV90] is incorrect. The
mistake was found after 17 years in 2007. For pedagogical purpose, we will give the original wrong
proof and fix it with a revision.

Lemma 7. Let xt denote the probability that the vertex of rank σ(v) = t is matched by A, then

1− xt ≤
1

n

∑
s≤t

xs.

Now we give the incorrect proof below.

Proof. Let v ∈ V such that σ(v) = t and u = M(v). The graph G and the customer ordering is
fixed, so is the perfect matching M . The merchant ordering is generated uniformly. Therefore, v is
distributed uniform over V and thus u is distributed uniform over U . Let Rt−1 ⊆ U be customers
served by merchants v′ with σ(v′) < t. Then E(|Rt−1|) =

∑
s≤t−1 xs. If v is unmatched, then u is

matched to merchants with smaller rank. This means if v is unmatched, u ∈ Rt−1. Then

1− xt = P(v unmatched),

≤ P(u ∈ Rt−1),

= E

(
|Rt−1|

n

)
, (5)

=
1

n

∑
s≤t−1

xs.

Given Lemma 3, we proceed to prove the approximation ratio. Let St :=
∑t

i=1 xt denote the sum
of xt’s. By Lemma 3, we have

1− (St − St−1) ≤
St

n
.

Rearrange and we get

St ·
n+ 1

n
≥ St−1 + 1.
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Rearrange again and

St ≥ (St−1 + 1)

(
n

n+ 1

)
,

≥
(

n

n+ 1

)
+

(
n

n+ 1

)2

+ · · ·+
(

n

n+ 1

)t

,

=

(
n

n+ 1

) 1−
(

n
n+1

)t
1−

(
n

n+1

) ,

= n

(
1−

(
1− 1

n+ 1

)t
)
.

Then we can calculate the approximation ratio

Approximation ratio =
E(number of matched customers)

n
,

=
Sn

n
,

≥
(
1−

(
1− 1

n+ 1

)n)
,

≥ 1− 1

e
,

≈ 63%.

5.2 Revised proof

We present a revision of the proof in this subsection. The proof of Lemma 3 is wrong because
equation (5) does not hold. Although u is uniformly distributed, it is dependent on the permutation
σ. The set Rt−1 is also dependent on σ so u and Rt−1 are not independent. To fix this issue, we
first propose the following lemma.

Lemma 8. Let u ∈ U and v = M(u). Let σ′ be a permutation that σ′(v) = t and σ(i) be the
permutation σ′ with v moved to rank i. If v is unmatched in σ′, then u is matched to v(i) in σ(i)

such that σ(i)(v(i)) ≤ t for any choice of i.

Proof. By lemma 2, u is matched in σ′. Then u is also matched in σ(i) because deleting an
unmatched merchant won’t affect the matching and inserting a merchant will only increase the
matching. We go from the permutation σ(i) to σ′ by first removing v from σ(i) and then inserting
v to rank t. By Lemma 1, removing v from σ(i) will match u to some merchant k such that
σ(i)(k) > σ(i)(v(i)). Then we add v back to rank t and get σ′. Since v is unmatched in σ′,
adding it back won’t change the matching. Note that σ′(k) ≥ σ(i)(k) − 1 because the rank of
σ(i)(k) either decreases by 1 or stays the same. By Lemma 2, we have t ≥ σ′(k). This gives
t ≥ σ′(k) ≥ σ(i)(k)− 1 ≥ σ(i)(v(i)) as desired.

Now we show the correct proof of Lemma 3. We choose uniformly random permutation σ and
uniformly random merchant v. Now v and σ are independent. Let σ′ be the permutation σ with
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v moved to rank t. Let u = M(v). By Lemma 4, if v is unmatched in σ′, then u is matched to
merchant ṽ in σ such that σ(ṽ) ≤ t. Now we have

1− xt = P(v is unmatched in σ′),

≤ P
v,σ

(σ(ṽ) ≤ t),

= E
σ

(
P
v
(σ(ṽ) ≤ t|σ)

)
,

= E
σ

(
P
u
(σ(ṽ) ≤ t|σ)

)
,

= E
σ

(
|Rt|
n

)
,

=
E(|Rt|)

n
,

=
1

n

∑
s≤t

xs.

The set Rt is the same as the previous definition. The issue is now fixed because u is only dependent
on v and is independent of σ. The set Rt is only dependent on σ and is independent of v. With
the correct proof of Lemma 3, the rest of the analysis follows.
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