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1 Overview

In the last lecture, we learned the matrix concentration inequalities: the Bernstein concentration
inequality and the Rudelson-Vershynin (RV) Lemma. At the end of the lecture, we introduced the
graph sparsification problem.

In this lecture, we will continue the discussion of spectral sparsification of graphs. In particular,
we will cover the following contents:

– introduction to the spectral graph sparsification problem (Section 2),

– effective resistance of edge when we treat the graph as an electrical network (Section 3),

– the graph sparsification algorithm given by Spielman and Srivastava [SS08] (Section 4.1),

– analysis of the algorithm on complete graphs (Section 4.2) and on general connected graphs
(Section 4.3).

2 Setup

2.1 Graph representation

Let G = (V,E) be an unweighted and undirected graph with n vertices and m edges. The graph
Laplacian of G is defined by a n× n matrix LG = D −A, where A ∈ Rn×n is the graph adjacency
matrix such that A(u, v) = 1 for (u, v) ∈ E and 0 otherwise, and D ∈ Rn×n is the diagonal matrix
of vertex degree, i.e. D(u, u) =

∑
v∈V A(u, v).

For the ease of our discussion, we need to express Laplacian in another way. If we orient the edges
of G arbitrarily, we can define its signed edge-vertex incidence matrix U ∈ Rm×n, given by

U(e, u) =


1 if vertex u is edge e’s head

−1 if vertex u is edge e’s tail

0 otherwise.

We denote uTe as the row of U associated with edge e = (u, v), then ue = (χu−χv), where χu ∈ Rn

is the elementary unit vector with a coordinate 1 at position u. Now, we can write the Laplacian
as

LG = UTU =
∑
e∈E

ueu
T
e . (1)
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It is easy to see that LG is a positive semi-definite matrix. For a weighted graph H = (V, Ẽ, w),
we can write its Laplacian as

LH = UTWU =
∑
e∈Ẽ

weueu
T
e , (2)

where W ∈ R|Ẽ|×|Ẽ| is a diagonal matrix with edge weights.

2.2 Graph Sparsification

Our goal of sparsification is to approximate G by a sparse graph H with the same vertices. The
question is what would be the appropriate metric to measure how H is close to G? Here we discuss
two types of graph sparsifiers: cut-sparsifier and spectral sparsifier.

Definition 1 (Cut-sparsifier). H is a cut-sparsifier for G with parameter ϵ if

∀S ⊆ V, (1− ϵ)CG(S) ≤ CH(S) ≤ (1 + ϵ)CG(S),

where CG(S) and CH(S) are graph cuts to G and H respectively.

Definition 2 (Spectral sparsifier). H is a spectral sparsifier for G with parameter ϵ if

∀x ∈ Rn, (1− ϵ)xTLGx ≤ xTLHx ≤ (1 + ϵ)xTLGx, (3)

which is equivalent to

(1− ϵ)LG ⪯ LH ⪯ (1 + ϵ)LG.

The following Proposition states the relation between these two sparsifiers.

Proposition 3. If H = (V, Ẽ, w) is a spectral sparsifier for graph G = (V,E) with parameter ϵ,
then H is also a cut-sparsifier for G with parameter ϵ.

Proof. Let 1S ∈ {0, 1}n be the indication vector for vertices in S, i.e. 1S(v) = 1 if v ∈ S. By the
definition of graph cut, we have

∀S ⊆ V, CG(S) =
∑

e=(u,v)∈E

1{u∈S,v /∈S}

=
∑
e∈E

|uTe 1S |

=
∑
e∈E

1TSueu
T
e 1S

= 1TSLG1S ,

and

∀S ⊆ V, CH(S) =
∑

e=(u,v)∈Ẽ

we1{u∈S,v /∈S}

= 1TS
(∑
e∈Ẽ

weueu
T
e

)
1S

= 1TSLH1S .
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Since H is a spectral sparsifier with parameter ϵ, applying (3) with x = 1S , we can get

∀S ⊆ V, (1− ϵ)CG(S) ≤ CH(S) ≤ (1 + ϵ)CG(S).

Thus H is also a cut-sparsifier for graph G with parameter ϵ.

Since spectral sparsifier implies cut-sparsifier, in this lecture we will focus on the spectral sparsifi-
cation of graphs.

3 Intuition from Electrical Flows

We identify graph G = (V,E) with an electrical network on n nodes and each edge e corresponds to
a resistor of unit resistance (i.e., conductance is 1). We will use the following notations to describe
the electrical flows:

– v ∈ Rn: potentials induced at the vertices.

– x ∈ Rn: currents injected at the vertices.

– y ∈ Rm: currents induced in the edges.

By Kirchhoff’s current law, due to the charge conservation, for any vertex u, the injected current
is equal to the sum of currents in edges around v, i.e. x(u) =

∑
e∈E ue(u)y(e). Thus

x = UT y. (4)

By Ohm’s law, the current flow in an edge is equal to the potential difference across its ends times
its conductance, i.e.

y = Uv (5)

Combining (4) and (5), we can get x = UT y = UTUv = LGv. Denote the Moore-Penrose Pseu-
doinverse of LG as L+

G, we can write the potential as

v = L+
Gx. (6)

Now we can define the effective resistance of an edge.

Definition 4 (Effective Resistance). The effect resistance of and edge is the potential difference
induced between them when a unit current is injected at one and extracted at the other.

To get the expression of the effective resistance re of an edge e = (i, j), let the injected current be
x = χi − χj = ue, then by (6) we have v = L+

Gue. The potential difference between vertex i and j
is v(i)− v(j) = (χi−χj)

T v = uTe v = uTe L
+
Gue. According to Definition 4, the effective resistance of

edge e is

re = uTe L
+
Gue. (7)
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4 Spectral Sparsification of graphs

4.1 Algorithm

Our main idea is to sample edges from G and include them in the sparse graph H. Assume that we
sample M edges from G with replacement with probability pe, and for each round we include the

sampled edge into H with weights 1
Mpe

. Define zi =
√

1
pe
ue with probability pe for i = 1, · · · ,M .

We can observe that

E[zizTi ] =
∑
e∈E

pe
1

pe
ueu

T
e = UTU = LG. (8)

By (2) the Laplacain of graph H is

LH =
∑
e∈E

(# of times e sampled )

Mpe
ueu

T
e =

1

M

∑
e∈E

(# of times e sampled ) · ue√
pe

ue√
pe

T

=
1

M

M∑
i=1

ziz
T
i , (9)

and the expectation of LH is

E[LH ] = E
[ 1

M

M∑
i=1

ziz
T
i

]
= LG, (10)

i.e. the expectation of LH is exactly LG.

Our question is: how many samples M and what probability distribution pe can make LH close to
LG in the desired way?

By intuition, the probability pe should reflects the importance of an edge. For instance, consider
an unweighted complete graph, we might expect pe to be the same for each edge since each edge
has the same importance. While for a barbell graph, we would like the edge that connects the two
components is more likely to be sampled than other edges. We will set the probability proportional
to the edge effective resistance defined in the last section, i.e. pe ∝ re (we will show later that
pe = re/(n− 1) for a connected unweighted graph). The intuition is that the effective resistance of
an edge is known to be equal to the probability that the edge appears in a random spanning tree
of G, and is proportional to the commute time between the endpoints of the edge.

We summarize the graph sparsification algorithm as the following. In the rest of the lecture, we
analyze this algorithm for complete graphs and general connected graphs.

Algorithm 1 H = Sparsify(G, M)

Take M samples independently with replacement by the following way:
- choose an edge e of G with probability pe proportional to edge effective resistance re,
- add e to H with weight 1

Mpe
, summing weights if e is chosen more than once.
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4.2 Warmup: Complete Graphs

Consider an unweighted complete graph G, then its Laplacian is:

LG =


n− 1 −1 . . . −1
−1 n− 1 . . . −1
...

...
. . .

...
−1 . . . −1 n− 1

 = nIn − 11T . (11)

Note that

∥LG∥ = sup
∥x∥2=1

xTLGx = sup
∥x∥2=1

nxTx− xT11Tx = sup
∥x∥2=1

n−
(∑

i

xi
)2 ≤ n. (12)

We first show that for a complete graph, controlling the closeness between the quadratic forms
xTLHx and xTLGx is equivalent to bounding the spectral norm of LH − LG.

Lemma 5. For an unweighted complete graph G, H is a spectral sparsifier with parameter ϵ is
equivalent to ∥LH − LG∥ ≤ nϵ.

Proof. By the definitions of spectral sparsifier and spectral norm, we need to show that ∀x ∈ Rn

such that x ̸= 0,

(1− ϵ)xTLGx ≤ xTLHx ≤ (1 + ϵ)xTLGx ⇐⇒ |xT (LH − LG)x|
xTx

≤ nϵ. (13)

• If x ∈ span(1), i.e. x = c1 for some c, then Ux = 0. Thus LGx = UTUx = 0 and LHx =
UTWUx = 0. Then (13) holds trivially.

• If x ⊥ span(1), i.e. 1Tx = 0, then LGx = nx− 11Tx = nx, and xTLGx = nxTx. The left hand
side of (13) becomes to

−nϵxTx ≤ xT (LG − LH)x ≤ nϵxTx,

which is equivalent to the right hand side of (13).

Our goal now is to show that E[∥LH−LG∥] ≤ nϵ. First recall the Rudelson-Vershynin (RV) Lemma
[RV05] that we learned in the last lecture.

Lemma 6. [Rudelson-Vershynin (RV) Lemma] Let x1, · · · , xm ∈ Rn be independent random vectors
such that

∥xi∥2 ≤ K(K ≥ 1), ∥E[xixTi ]∥ ≤ 1.

Then

E
[∥∥∥∥ 1

m

m∑
i=1

xix
T
i − 1

m

m∑
i=1

E[xixTi ]
∥∥∥∥] ≲ K

√
log n

m
,

for K
√

logn
m < 1.
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Theorem 7. Let G is an undirected, unweighted and complete graph and H =Sparsify(G, M)
be the sparse graph generated by Algorithm 1. Suppose G and H have Laplacians LG and LH

respectively. If M ≥ O(1)
ϵ2

n log n,

E[∥LH − LG∥] ≤ nϵ. (14)

Proof. First we determine what is pe. Note that G is unweighted and complete graph and every
edge should have the same effective resistance, thus pe should be the same for each edge. Since
there are

(
n
2

)
edges in the graph, the sampling probability is

pe =
1(
n
2

) =
2

n(n− 1)
. (15)

Recall that we previously defined zi =
√

1
pe
ue. let yi =

zi√
n
, then

yi =
zi√
n
=

√
n− 1

2
ue, (16)

and ∥yi∥2 =
√
n− 1.

We also have:

(by (9))
LH

n
=

1

nM

M∑
i=1

ziz
T
i =

1

M

M∑
i=1

yiy
T
i , (17)

(by (8)) E[yiyTi ] =
1

n
E[zizTi ] =

LG

n
, (18)

(by (12)) ∥E[yiyTi ]∥ =
∥LG∥
n

≤ 1. (19)

Now we can apply the RV Lemma to upper bound E[∥LH − LG∥]:

E[∥LH − LG∥] = nE
[∥∥∥∥LH

n
− LG

n

∥∥∥∥]
= nE

[∥∥∥∥ 1

M

M∑
i=1

yiy
T
i − 1

M

M∑
i=1

E[yiyTi ]
∥∥∥∥] (by (17) and (18))

≲ n

√
n log n

M
,

where the last inequality follows by RV Lemma with K =
√
n− 1. Thus if M ≥ O(1)

ϵ2
n log n, we

have ∥LH − LG∥ ≤ ϵn.
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4.3 General Graphs

4.3.1 Result

We now consider spectral sparsification for a general undirected, unweighted and connected graph
G. Let H be the sparse graph generated by Algorithm 1. The main result is that if M is sufficiently
large, then H is a good sparsifier, i.e. the quadratic forms xTLGx and xTLHx are close.

Theorem 8. Let G be an undirected, unweighted and connected graph, and H =Sparsify(G, M)
be the sparse graph generated by Algorithm 1. Let LG and LH be the Laplacian of G and H
respectively. If 1/

√
n < ϵ ≤ 1 and M = Cn log n/ϵ2, then there exits some constant C s.t. with

probability at least 1/2,

∀x ∈ Rn (1− ϵ)xTLGx ≤ xTLHx ≤ (1 + ϵ)xTLGx. (20)

For spectral sparsification of weighted graphs, please refer to [SS08]. Basically, we can use the
similar idea of sampling in Algorithm 1. But the probability used for sampling edge should be
proportional to were, and the weight added to H becomes to we/(Mpe). Besides, the analysis is
very similar to what we show in this section.

We will prove Theorem 8 in the rest of this section.

4.3.2 Analysis

We first look at some properties of the Laplacian LG = UTU and the matrix R = UL+
GU

T in
Lemma 9 and Lemma 10 respectively.

Lemma 9. The Laplacian matrix LG has the following properties:

(i) ker(LG) = ker(U) = span(1), where ker(LG) is the kernel of matrix LG.

(ii) L+
GLG = LGL

+
G is the projection onto the span of the non-zero eigenvectors of LG.

Proof.

(i) Since LG = UTU ,

x ∈ ker(LG) ⇐⇒ ∀y ∈ Rn, yTUTUx = 0 ⇐⇒ Ux = 0 ⇐⇒ ∥Ux∥22 = 0

⇐⇒
∑

(u,v)∈E

(x(u)− x(v))2 = 0

⇐⇒ x(u) = x(v),∀(u, v) ∈ E

⇐⇒ x ∈ span(1), since G is connected graph.

(ii) From (i), the rank of LG is n− 1, since LG is symmetric, we can diagonalize it as

LG =
n−1∑
i=1

λiviv
T
i ,
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where λ1, · · · , λn−1 are the (n− 1) nonzero eigenvalues of LG and v1, · · · , vn−1 are the corre-
sponding eigenvectors. Then the Moore-Penrose Pseudoinverse of LG is

L+
G =

n−1∑
i=1

1

λi
viv

T
i .

Note that

L+
GLG = LGL

+
G =

n−1∑
i=1

viv
T
i ,

then L+
GLG = LGL

+
G is the projection onto the span of the non-zero eigenvectors of LG. Thus,

LGL
+
G = L+

GLG is an identity on the range space of LG, which is denoted by im(LG).

Lemma 10. Matrix R has the following properties:

(i) R is a projection matrix.

(ii) im(R) = im(U).

(iii) The eigenvalues of R are 1 with multiplicity of n− 1 and 0 with multiplicity of m− n+ 1.

(iv) re = R(e, e) = ∥R(·, e)∥2, where R(·, e) is the column corresponding to edge e in R.

(v) (Foster’s Resistance Theorem)
∑

e∈E re = n− 1.

Proof.

(i) Since R = UL+
GU

T ,

RR = UL+
GU

TUL+
GU

T = UL+
GLGL

+
GU

T

= UL+
GU

T (L+
GLG is identity on im(LG) by Lemma 9.(ii))

= R.

(ii) im(R) = im(UL+
GU

T ) ⊆ im(U). To see the other inclusion, pick arbitrary y ∈im(U), we can
choose x ⊥ker(U)=span(1), s.t. y = Ux. Then

Ry = UL+
GU

TUx = UL+
GLGx

= Ux (L+
GLGx = x for x ⊥ker(U))

= y.

(iii) Let λ and v be an eigenvalue and corresponding eigenvector of R, then λ2v = λRv = RRv =
Rv = λv since RR = R by (i). Thus λ2 = λ, i.e. the eigenvalues of R are all 0 or 1.

From (ii) and Lemma 9.(i), we can conclude that dim(im(R)) = dim(im(U)) = dim(im(LG))
= n− 1. Therefore R has n− 1 eigenvalues that are 1, and m− n− 1 eigenvalues that are 0.

(iv) Recall the definition of the effective resistance, we have re = uTe L
+
Gue = R(e, e). The second

equality follows from R(e, e) = R2(e, e) = R(·, e)TR(·, e), since R is a projection matrix and
is symmetric.
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(v) From (iii) and (iv), ∑
e∈E

re =
∑
e∈E

R(e, e) = Tr(R) = n− 1.

We describe the outcome of H by a random diagonal matrix S ∈ Rm×m with diagonals defined by

S(e, e) =
# of times edge e is sampled

Mpe
. (21)

Now we can use S to rewrite the Laplacian of H, i.e LH as

LH =
∑
eE

# of times edge e is sampled

Mpe
ueu

T
e =

∑
e∈E

S(e, e)ueu
T
e = UTSU. (22)

Our goal is to show that H is a good sparsifier of G, i.e. we need to show that xTLHx and xTLGx
are close. We start by reducing the proble of preserving xTLGx to that of preserving yTRy. In
particular, we can prove the following lemma, which says that if S does not distort yTRy too much
then xTLHx and xTLGx are close.

Lemma 11. If S is a nonnegative diagonal matrix such that

∥RSR−RR∥ ≤ ϵ, (23)

then ∀x ∈ Rn,

(1− ϵ)xTLGx ≤ xTLHx ≤ (1 + ϵ)xTLGx. (24)

Proof. By the definition of the spectral norm, the assumption of (23) is equivalent to

sup
y∈Rm,y ̸=0

|yTR(S − I)Ry|
yT y

≤ ϵ.

We restrict our attention to vectors in im(U). Let y ∈im(U), by Lemma 10.(ii), ∃z ∈ Rm, s.t.
y = Rz, and thus Ry = RRz = Rz = y. Then we have

sup
y∈im(U),y ̸=0

|yTR(S − I)Ry

yT y
= sup

y∈im(U),y ̸=0

|yT (S − I)y|
yT y

= sup
x∈Rn,Ux̸=0

|xTUT (S − I)Ux|
xTUTUx

(rewrite y = Ux for some x ∈ Rn)

= sup
x∈Rn,Ux̸=0

|xT (LH − LG)x|
xTLGx

≤ ϵ. (LG = UTU, LH = UTSU)

Rearranging yields the results in (24) for all x /∈ker(U). When Ux = 0, xTLHx = xTUTSUx = 0,
(24) holds trivially.
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We can now finish the proof of Theorem 8 by showing that ∥RSR−RR∥ is likely to be small, which
is the assumption of the previous Lemma.

Proof of Theorem 8. First we use the RV Lemma to bound E[∥RSR − RR∥]. Sampling M edges
from G is corresponding to sampling M columns from R, so we can write

RSR =
∑
e∈E

S(e, e)R(·, e)R(·, e)T =
∑
e∈E

# of times edge e is sampled

Mpe
R(·, e)R(·, e)T

=
1

M

∑
e∈E

(# of times edge e is sampled) · R(·, e)
√
pe

R(·, e)T
√
pe

=
1

M

M∑
i=1

yiy
T
i ,

where vectors y1, · · · , yM are sampled independently with replacement from the distribution

y =
1

√
pe

R(·, e) with probability pe. (25)

The expectation of yiy
T
i for each i is

E[yiyTi ] =
∑
e∈E

pe
1

pe
R(·, e)R(·, e) = RTR = RR = R. (26)

The spectral norm of R is 1 by Lemma 10.(iii), so ∥E[yiyTi ]∥ = ∥R∥ = 1.

By Fosters’ Resistance Theorem (i.e. Lemma 10.(v)), sum of effective resistance is
∑

e∈E re = n−1
and thus the sampling probability is pe =

re
n−1 . Then we have

∥yi∥2 = ∥ 1
√
pe

R(·, e)∥ =

√
n− 1

re
∥R(·, e)∥ =

√
n− 1, (27)

since ∥R(·, e)∥ =
√
re by Lemma 10(iv).

Now we can apply the RV Lemma: by taking M = Cn log n/ϵ2 for some constant C, we have

E[∥RSR−RR∥] = E
[∥∥∥∥ 1

M

M∑
i=1

yiy
T
i − 1

M

M∑
i=1

E[yiyTi ]
∥∥∥∥] ≤

√
n− 1

√
log n

M
≤ ϵ

2
. (28)

By Markov’s inequality,

P
[
∥RSR−RR∥ ≥ ϵ

]
≤ 1

2
. (29)

Then the theorem follows by combining this with the results from Lemma 11.

10



References

[RV05] M. Rudelson and R. Vershynin. Sampling from large matrices: An approach through
geometric functional analysis. Journal of the ACM, 54(4):21, 2007.

[SS08] D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6), pp.1913-1926. 2011.

11


	Overview
	Setup
	Graph representation
	Graph Sparsification

	Intuition from Electrical Flows
	Spectral Sparsification of graphs
	Algorithm
	Warmup: Complete Graphs
	General Graphs
	Result
	Analysis



