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1 Overview

In this lecture, we covered some basic definitions and properties of Markov chains. We also examined
a lemma corresponding to the expected commute time from one state of the Markov chain to
another, and provided some first steps for its proof.

2 Basic Definitions

In this lecture, we defined a Markov chain as a discrete and memoryless stochastic process. These
definitions correspond to the following:

• Discrete: A Markov chain consists of a random walk on a discrete set of n states.

• Memoryless: This means that the next state of a Markov chain only depends on the previous
state. In other words:

P[Xt+1 = j | X0 = i0, X1 = i1, . . . , Xt = it] = P[Xt+1 = j | Xt = it] (1)

Definition 1 (Transition Matrix). We define the transition matrix of a Markov chain as the matrix
P = pij, where:

pij = P[Xt+1 = j | Xt = i] (2)

Using the transition matrix, we can write the following relationship regarding the distribution
across states1 q(t) = [P[Xt = 1], . . . ,P[Xt = n]]:

q(t+1) = q(t)P (3)

Definition 2 (Stationary Distribution). We call a distribution π over the states of a Markov chain
stationary if it satisfies:

πP = π (4)

Equivalently2, it is an eigenvector of P T , corresponding to eigenvalue 1.

1Scribe note: Note that this is defined as a row vector.
2Scribe note: Note that this implies that a Markov chain always has some stationary distribution. Indeed, the

matrix P has rows summing to 1, and so P1 = 1, where 1 is the all-ones vector. This means that P has an eigenvalue
equal to 1, and so does PT , with π being the corresponding eigenvector.
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(a) This Markov chain is periodic: if we start
from a single state with certainty, we will only
ever reach that state again after 3 steps.

(b) This Markov chain is reducible: there is no
path from states 2 or 3 to state 1.

Figure 1: Examples of state sequences that are non-ergodic.

Definition 3 (Ergodic Markov Chain). We call a Markov chain ergodic if it satisfies the following
two properties:

• It has a unique stationary distribution π, with πi > 0, ∀i ∈ [n].

• For any initial state distribution q(0) = q, q(t) = qP t converges to π. In other words:

∀q, lim
t→∞

(qP t) = π (5)

Theorem 4 (Fundamental Theorem of Markov Chains). A Markov chain is ergodic if the following
hold:

1. It is finite: n ∈ N.

2. It is irreducible: For any pair of states i and j, there exists a path from i to j with non-zero
probability.

3. It is aperiodic: The greatest common denominator of all paths from a node i back to itself is
equal to 1.

In Figure 1 we can see some examples of Markov chains which do not satisfy these properties, and
are thus non-ergodic. We also note here that, for irreducible Markov chains, the aperiodic condition
needs to only be checked with respect to a single state i (for any other state, we can move to i and
back, since the chain is irreducible).

Now, we define as N(i, t) the number of times that i is reached in the first t steps. The following
holds:

Lemma 5. For an ergodic Markov chain, we have:

lim
t→∞

N(i, t)

t
= πi (6)

In other words, the number of times we expect to reach state i in our random walk should converge
to the probability of that state in the stationary distribution (since the distribution converges to π
for all states.

Definition 6 (Hitting Time). For any two states u and v, we define as huv the expected number
of steps we will take to reach v, if we start from u. In the case of u = v, we define this time to be
the expected time to reach state u again (so huu > 0).
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3 Walks on Undirected Graphs

From here on, we shall consider our Markov chains to model walks on undirected graphs. More
specifically, given a graph G = (V,E), the transition matrix P of our markov chains has the
following form:

Puv =

{ 1
deg(u) , (u, v) ∈ E

0, otherwise
(7)

for all vertices u, v ∈ V . In this case, the following statements are equivalent:

• A Markov chain defined using the graph G is ergodic.

• The graph G is connected and contains an odd cycle.

• The graph G is connected and not bipartite.

The stationary distribution of the above Markov chain is πv = deg(v)
2m . Indeed:

•
∑

v∈V πv = 1
2m

∑
v∈V deg(v) = 1.

• (πP )v =
∑

u:(u,v)∈E πuPuv =
∑

u:(u,v)∈E
deg(u)
2m

1
deg(u) =

deg(v)
2m = πv

Definition 7 (Commute Time). We define the commute time cuv between two vertices as the
expected time required to move from u to v and back to u. In other words:

cuv = huv + hvu (8)

In the following, we shall examine the hitting and commute times for a few specific graphs:

• Clique of n vertices: In this example, all n vertices are connected to each other. For any
two vertices u and v, we will either move from one to the other immediately with probability
1

n−1 , or take one essentially “useless” step. So:

huv =
1

n− 1
+

n− 2

n− 1
(huv + 1) ⇒ huv = n− 1 (9)

This is an expected result - since we have so many options to move to, it will take a lot of
time to finally reach our destination.

• Connected path of n vertices: In this case, we can consider a random walk Z, with Zi = 1
with probability 1/2 and Zi = −1 with probability 1/2 as well. In this case, we have that
Var

[∑t
i=1 Zi

]
= t. This means that we need Θ(n2) steps to reach a standard deviation of

Θ(n) (so that we have a likely chance to reach the one side of the path from the other). This
means that, if u and v are the endpoints of the path, we have huv = Θ(n2).

• “Lollipop” graph: This graph consists of a clique of n
2 vertices, one of which is also con-

nected to a path of n
2 vertices. Note here that this case is not a simple combination of the

above two: in fact, the commute time from a vertex u in the clique and the other endpoint
of the path v is increased by the fact that it is likely that we make circles within the clique,
never actually progressing on the path. In the following, we shall show that in this case,
cuv = Θ(n3).
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We shall use the following lemma to analyze the final graph presented:

Lemma 8. Let us consider a random walk on a graph G = (V,E). For any two vertices u and v,
the following holds:

cuv = 2mRuv (10)

where Ruv is the effective resistance between the two vertices.

Using the above lemma, we can derive the commute time for the lollipop graph. We have the
following (assuming that w is the vertex where the clique and the path are connected):

• The effective resistance of the clique is Ruw ≤ 1 (since all vertices are connected, and con-
necting more paths in the clique only lowers the resistance).

• The effective resistance of the path is Rwv = Θ(n) (equivalent to resistors being added in
series).

• The total effective resistance is Ruv = Θ(n) (since the two graphs are connected in series).

Now, since the entire graph has m = Θ(n2) (due to the clique), using the lemma we have:

cuv = 2mRuv = Θ(n3) (11)

Note that, as stated above, this means that the commute time is much higher than when the two
graphs are examined independently.

4 Start of Proof for Lemma 8

We shall now start the proof of Lemma 8, which shall be concluded in the next lecture. We shall
make use of the physical analogy of a graph to a resistor network, with each edge representing a
resistor between two nodes, and each node having an assigned voltage.

Let us define the following current, going through the graph:

i =


deg(v1)

...
deg(u)

...
deg(vn)

−


0
...

2m
...
0

 (12)

The physical equivalent of this is introducing current deg(vi) into all nodes, and retrieving it all
from node u. We shall show that, if xv is the voltage at node v, then xv − xu = hvu.

As a reminder, the graph has a Laplacian matrix L = D−A, and the transition probabilities satisfy
P = D−1A (we can move to any adjacent node, with probability inversely proportional to the degree
of the node we are currently in). Combining the above, we get that L = D−A = D(I −P ). Thus,
we have:

i(u) = Lx = D(I − P )x (13)
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For now, let us alter our definitions of hitting times temporarily, so that we have huu = 0. Doing
so, we have:

hvu =
∑

w∈N(v)

1

deg(v)
(1 + hwu)

= 1 +
∑

w∈N(v)

1

deg(v)
hwu ⇔

deg(v) =
∑

w∈N(v)

(hvu − hwu)

(14)

Now, notice that if we set xv = hvu, then on the edge (u, v) we have current equal to xu−xv. This
means that: ∑

w∈N(v)

(xv − xw) = deg(v), ∀v ̸= u (15)

which means that the current input into the nodes v ̸= u is precisely that defined by i(u). Moreover,
given that the total current must be 0, the current into u is deg(u) − 2m, which is precisely the
one defined by i(u). This means that choosing xv = hvu is consistent with our choice for i(u), and
since huu = 0 (as mentioned above, temporarily) we have xv − xu = hvu.

In the above, we showed that x = L+i(u) satisfies xv = hvu. In the following lecture, we shall
complete this definition by taking advantage of the effective resistance Ruv = (eu−ev)

TL+(eu−ev)
of the network.
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