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1 Overview

In the last lecture we discussed low dimensional computational geometry, which included construct-
ing the 2D Convex Hull of n points and Planar point location - given n lines in a plane, find which
region a point lies in.

In this lecture we will move onto high dimensional computational geometry, by studying randomized
algorithms for locally sensitive hashing, first on {0, 1}d and in Hamming distance, and then on Rd

with both l1 and l2 norm.

2 Introduction

Suppose we have points p1, . . . , pn ∈ Rd in high dimensional space. We want to construct a data
structure such that for any query q ∈ Rd, we want to find the nearest pi to q, i.e. we want to find
argmini ||pi− q||. This is analogous to reverse image search, where one could have a 32 MP camera
image and wants to identify the image on the web which is closest to that.

In 2D, this is easy, since we can use the approach for Closest Pair outlined in Lecture 19, by hashing
to the grid. In higher dimensions, if I have a query point q in the centre of a ball, with all except
one of the pi on the surface of the ball, it can be hard to find argmini ||pi − q||.

Hence a simplified goal could be to solve the approximate nearest neighbour problem: Find i
s.t.

||pi − q|| ≤ Cmin
j

||pj − q|| (1)

We will instead be solving the approximate near neighbour problem: Given r such that
minj ||pj − q|| ≤ r, find i such that

||pi − q|| ≤ Cr (2)

Note that if I can solve (2), I can solve (1) by finding the smallest r that works in an exponential
fashion. Before we describe Locally Sensitive Hashing (LSH), let us consider a few deterministic
algorithms and the trade-off they afford between space and query-time

• Brute force i.e. Scan at query time (read point, measure distance and repeat). This requires
O(nd) space and O(nd) time to complete a query
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• (cr/
√
d)-sided cubes – For every query point, it has to be either in the cube associated with

the point pi or in one of the adjacent (
√
d/c)d cubes. This requires O(n) space and (

√
d/c)d

time to complete a query.

• If all the points are in {0, 1}d, we can precompute all distances in advance. This would take
2d log n space (where we have 2d possible queries and log n bits to store each answer) and d
time to complete a query.

Note: By Johnson-Lindenstrauss lemma [DG03], you can embed Rd into Rm for m = O( 1
ϵ2
log n)

and preserve l2 distances to (1± ϵ). In other words, the norm of the projection is preserved w.h.p.
Hence, WLOG, we can set d = O( 1

ϵ2
log n) i.e. assume the reduction specified by the Johnson-

Lindenstrauss lemma has already been preformed before we attempt to perform LSH.

LSH will get us a space requirement of n1+ρ and a query time requirement of nρ for ρ = 1/c under
the l1 metric and ρ = 1/c2 under the l2 metric. Note that by performing adaptive LSH, we can
obtain ρ = 1/2c and ρ = 1/(2c2 − 1) respectively.

3 Locally Sensitive Hash Function

Figure 1: Probability of collision plotted as a function of ||x− y||

This can be defined as a family of hash functions h : Rd → U such that (see Fig. 1)

||x− y|| ≤ r =⇒ Pr[h(x) = h(y)] ≥ p1

||x− y|| ≥ Cr =⇒ Pr[h(x) = h(y)] ≤ p2

The characteristic efficiency of h is denoted by ρ = logp2 p1. The intuition behind LSH functions
is as follows: we want the probability of collision to be small not for every pair of different things,
but only for things that are far apart. If they are close, we want them to collide.

3.1 Constructing LSH for X = {0, 1}d and Hamming distance ||.||H

Step 1: Pick any h with good ρ. Here we consider picking one random bit.

hi(x) = Xi i ∈ [d] uniform
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Then we have

Pr[h(x) = h(y)] = 1− ||x− y||
d

This implies p1 = 1− r
d and p2 = 1− Cr

d , which gives ρ = logp2 p1 ≥ 1/c if r/d is small

The issue here is r << d implies p1 and p2 are very high, i.e. almost always collide and we want to
drive p2 down.

Step 2: Repeat to decrease p1, p2 for some ρ. g(x) = (h1(x), h2(x), ..., hk(x)) for independent
hashing functions h1(x), h2(x), ..., hk(x). Then

Pr[g(x) = g(y)] =
∏
i

Pr[hi(x) = hi(y)]

The above probability has the following properties{
≥ pk1 if ∥x− y∥ ≤ r

≤ pk2 if ∥x− y∥ ≥ Cr

while the ρ keeps the same.

Example

If we set k = Θ((log n) d
Cr ), then g has p2 =

1
n , p1 =

1
nρ .

Then

E[# False Positive ] = E[#Pi s.t ∥Pi − q∥ ≥ Cr ∩ g(Pi)− g(q) = 0]

= p2n = 1

Pr[# Find a good point ] = p1 =
1

nρ

(3)

For this example, we have E[time] = nρ, Space=n1+ρ, and a constant success rate.

3.2 ℓ1 Example

If X ∈ [∆]d which means it is no longer in {0, 1}d space. The ℓ1 distance between two points are
defined as ∥x− y∥1 =

∑
i |xi − yi|.

Consider the following three points, and clearly y is closer to x in ℓ1, but it has more different
dimensions from x than z:

x = (0, 0, 0, ..., 0)

y = (1, 1, 1︸ ︷︷ ︸
r

, ..., 0)

z = (Cr, 0, 0, ..., 0)

A reasonable construction of LSH is

hi(x) =

⌊
xi − si

w

⌋
where i is the dimension and si is random in [w]. If w ≫ Cr, then ρ ≈ 1

C
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3.3 ℓ2 Example

If X ∈ Rd and ∥X∥2 = 1.

Then an example of construction of LSH is

hv(x) = sign(< v, x >)

where v is a normal vector. The probability that two points collide is

Pr[h(x) = h(y)] = 1− θ

π

= 1−
2 sin−1(12∥x− y∥)

π

≈ 1− ∥x− y∥
π

=⇒ ρ ≈ 1

C

3.4 Better Algorithm

Pick u1, u2, ..., uT ∈ Sd−1 = Rd ∩ ∥ · ∥2 = 1. Let h(x) = argmini ∥ui − x∥.

• If T = 2, then it is the same as ℓ2 case, ρ = 1
C

• If T ≫ 2, then ρ = 1
C2 + oT (1)

where oT (1) → 0, as T → ∞
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