
CS 388R: Randomized Algorithms, Fall 2021 November 11, 2021

Lecture 22: Network Coding

Prof. Eric Price Scribe: Yeongwoo Hwang and Geoffrey Mon

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture we discuss Network Coding, which solves the problem of transmitting a message
composed of multiple words from a source vertex s to a target vertex t in some graph G. In fact,
we’ll show that the full source message will, with high probability, be received by every vertex in
the graph.

2 Algorithms for Network Coding

Figure 1: Directed Acyclic Graph (DAG) with 2 Edge Connectivities

First, we’ll formally define the problem. The source vertex s “knows” messages m1, . . . ,mk ∈ Fl
q,

where q is the size of a single word (e.g. q = 264 for 64-bit words) and l is the number of words
per “packet.” k is the total number of packets in the file that s is sending. At any given round,
an edge e ∈ E(G) can send a message v ∈ Fl′

q , where l′ > l. One can think of v as including some
message mi as well as a (l′ − l)-word header. We are then interested in computing the number of
messages mi t can receive as a function of R, the total number of rounds.

2.1 Naive Algorithm

A very simple algorithm proceeds as follows. Each v ∈ V (G) keeps track of all the messages its
received so far; call this set Xv = {(i,mi) : i received by v}. At the beginning of the algorithm,
Xs = {(1,m1), . . . , (k,mk)} and for v ̸= s, Xv = ∅. At any given round, each vertex sends to all of
its neighbors the highest indexed message its received thus far. In this simple algorithm, at round
R, t receives

R− dist(s, t) ≥ R− n

1



messages. This is because there’s a lag of dist(s, t) for the first message to reach t from s. This
seems, pretty good, an in particular, as R → ∞, t receives (1 − o(1))R messages. But we can do
better!

2.2 Better (Non-Randomized) Algorithm

The intuition we’ll use is for our improved, non-randomized (and later, randomized) algorithm
is that we can send different messages along edge-disjoint paths. In the example graph above, we
could, for instance, send even-indexed messages along the top path and odd-indexed messages along
the bottom path. Letting Cs,t be the minimum s-t cut, by max-flow/min-cut duality, there are also
Cs,t edge-disjoint paths from s to t. Thus, we get an improved rate of

Cs,t ·R · (1− o(1))

Unfortunately, this algorithm has the downside of needing to “pre-process” the graph and exactly
map out the disjoint paths. This is an expensive operation, and if the graph changes we might
need to do it many times. Network coding solves this issue.

2.3 Randomized Algorithm

Network coding is a simple, robust algorithm which is oblivious to the underlying graph. In
particular, each vertex u only cares about its immediate neighbors N(v). We’ll show that this
algorithm also obtains Cs,t ·R · (1− o(1)) for sending the desired messages to any given destination
vertex. This is actually the best possible result. In a single round, we can transmit at most l′

messages across each edge of the size-Cs,t cut. Over R rounds, this gives an upper bound of Cs,tRl′

words sent. Sending k l-word messages requires kl words, so

kl ≤ Cs,tRl′ =⇒ k ≤ Cs,t
Rl′

l

For large enough l, this essentially matches the lower bound given by Network Coding. Now we
give the actual algorithm.

We’ll set l′ = l+ k, with the header being the unary representation of the message index. That is,
we concatenate a unary representation to each mi, such that the total spaces of “known” l′-word
messages by s is then,

span




1 0 0 . . . 0 m1

0 1 0 . . . 0 m2
...

...
0 0 0 . . . 1 mk


 ⊆ Fl′

q (1)

Furthermore, we’ll let each vertex v “know” a subspace Xv ⊆ Fl′
q at each point in time. Xv denotes

the subspace spanned by messages that v has received. Initially, Xv = ∅. We will maintain that
Xv ⊆ Xs. At any round, each vertex v selects a random u ∈ Xv (or nothing if Xv) is empty,
and sends it to its neighbors. At the conclusion of the round, each vertex v has received messages
(u1, . . . , ud(v)) and updates its subspace as follows:

Xv = span(Xv ∪ {u1, . . . , ud(v)})

2



That is, v updates its subspace by considering the span of some basis for Xv combined with all of
the messages it has seen. Note that the matrix representing the messages v has received will almost
certainly not be in the form given by equation (1). To put its matrix into the canonical form, v
can diagonalize some basis for Xv using Gram-Schmidt orthogonalization; if Xv = Xs, then v can
recover all of the k original messages m1, . . . ,mk by reading off of the right side of the matrix.

2.3.1 Analysis

To analyze this algorithm, we will need to prove that a given vertex v will grow its own subspace
Xv quickly, until Xv = Xs. Let Yv = X⊥

v = {u ∈ Fl′
q : ∀u′ ∈ Xv. u · u′ = 0}, that is, the set of

vectors that are orthogonal to everything in Xv. Say that v is “aware” of vector u if u /∈ Yv. Note
the following:

• The number of vectors that v knows is qdim(Xv), because we can consider all linear combina-
tions of a basis of size dim(Xv)

• The number of vectors that v is unaware of is ql
′−dim(Xv), because there is a basis of size

l′ − dim(Xv) for Fl′
q \Xv

• The number of vectors that v is aware of is ql
′ − ql

′−dim(Xv) = ql
′ · (1− 1/qdim(Xv)) which we

compute by subtracting the number of unaware vectors from the total size of Fl′
q

Lemma 1. If v is aware of u, w is unaware of u, and v sends a (random) message to w, then w
becomes aware of u with probability ≥ 1− 1/q.

Proof. First, note that the probability that w becomes aware of u is at least the probability that
v sends u′ such that u · u′ ̸= 0, since when u′ is added to Xw, u will no longer be orthogonal to
everything in Xw. Then, for any u such that v is aware of u, a random u′ has that u · u′ = 0 with
probability 1/q. Intuitively, you can imagine considering some basis that includes u; the probability
that u′ is orthogonal to u is the probability that we select 0 as the coefficient for u when picking a
random linear combination. So, the probability that a random u′ has u · u′ ̸= 0 is 1 − 1/q, which
completes the proof.

Now, consider some path of length L from s to t. After L + r − 1 rounds, for an arbitrary fixed
vector u,

P[t is unaware of u via this path] ≤ P[u has failed to proceed r times]

That is, for r vertices on the path, that vertex (which was aware of u) failed to make the next
vertex on the path aware of u. We can upper bound this by considering a specific combination of
r rounds (using the fact that r independent rounds all fail to proceed with probability ≤ q−r), and
then union bounding over all combinations.

≤
(
L+ r

r

)
· 1

qr

≤
(
e · (1 + L/r)

q

)r

≤
(
2e

q

)r

3



where the last inequality follows if we assume r ≥ L.

Now, suppose we have R = n + r total rounds. Set r such that R ≥ n/ϵ for some ϵ which will
appear later (and which we can set at the end). Then, we can bound the probability that t is
unaware of some fixed vector u after R rounds. Note that there are Cs,t edge-disjoint paths from
s to t, and failures to proceed along these paths are independent between paths. So, t is unaware
of u if all of these s → t paths have failed to proceed enough times:

P[t unaware] ≤
(
2e

q

)rCs,t

≤
(
2e

q

)Cs,tR(1−ϵ)

≤ q−Cs,tR(1−ϵ)2

where the last inequality follows from setting q ≥ 2O(1/ϵ), since we have that qϵ ≥ 2O(1) ≥ 2e, from
which it follows that 2e/q ≤ q−(1−ϵ).

Finally, Xs has qk vectors because the dimension of Xs is k, and there are q choices for the
coefficient for each of the k basis elements when assembling a linear combination. So, the expected
number of vectors in Xs that t is unaware of after R rounds is ≤ qk−Cs,tR(1−ϵ)2 , which is ≪ 1
when k < Cs,tR(1 − ϵ)3. So we have that with high probability, t is aware of all vectors in Xs:
∀u ∈ Xs.∃u′ ∈ Xt.u · u′ ̸= 0. Because Xt ⊆ Xs, this implies Xt = Xs i.e., t knows all of the original
messages m1, . . . ,mk.

Recall that we can transmit at most l′ messages across each edge of the Cs,t-sized cut. So, over R

rounds, we must have that k ≤ Cs,t · Rl′

l = Cs,tR · l+k
l . If l is large enough, we can say l+k ≤ (1+ϵ)l.

Then, we have that k ≤ Cs,tR(1 + ϵ), which implies for a fixed k that we need R ≥ k
Cs,t(1+ϵ) . How

does that compare to our randomized algorithm? We require that R ≥ n/ϵ, q ≥ 2O(1/ϵ), and
l ≥ k/ϵ; putting these together, we have that R = k

Cs,t
· (1−O(ϵ)). So, we are within a (1 +O(ϵ))

factor of the optimal number of rounds needed to send our k messages.

As an aside, note that this algorithm is robust to unreliable or changing networks. For example, if
each transmission drops out with probability 1/2, that would only change where we analyze failures
to proceed. Problem Set 9 contains a problem that explores how to analyze the performance of
this algorithm on a dynamic network.

4


	Overview
	Algorithms for Network Coding
	Naive Algorithm
	Better (Non-Randomized) Algorithm
	Randomized Algorithm
	Analysis



