
CS 388R: Randomized Algorithms, Fall 2021 Nov 23, 2021

Lecture 25: Randomized Rounding

Prof. Eric Price Scribe: Connor Colombe

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture we look at how we can use the concept of randomized rounding to develop approx-
imation algorithms. To get a better sense of what exactly this means, let’s jump into an example
using the weighted set cover problem.

2 Weighted Set Cover

Suppose we are given n items that form a universe of items U , m sets of items S1, . . . , Sm ⊂ U ,
and weights w1, . . . , wm for each set.

Definition: We call a set of indices C ⊆ [m] a cover if

∪i∈CSi = U.

In other words, for each of our item j, there is some i in our cover C such that Si contains j. The
goal of the weighted set cover problem is to find a cover C for our n items using a collection of Si
with minimal total weight/cost. Let the cost of a cover C be given by

Cost(C) =
∑
i∈C

wi

Unfortunately, this problem is NP-Hard. So how ought we go about solving it? Let’s use an
approximation algorithm! Instead, of solving the problem exactly, we will now search for a cover
C such that

Cost(C) ≤ α ·OPT

where OPT is the minimal possible cost of a cover for our sets and α ≥ 1 is the approximation factor.

To begin, we will first cast the weighted set cover problem as an integer program (IP). An integer
program is an optimization problem where the decision variables are restricted to be integral. In
our case, the IP for weighted set cover is given by

1



min
m∑
i=1

wixi∑
i:Si3j

xi ≥ 1 ∀j = 1, 2, . . . , n

xi ∈ {0, 1} ∀i = 1, 2, . . . ,m

where xi is the binary decision variable that takes on unit value if index i is in the cover C. Observe
that the first constraint enforces that any feasible x = (x1, . . . , xm) is a cover. Let the minimum
possible cover weight be denoted OPT .

Since solving this IP is NP-Hard, we will instead relax the integrality constraints by allowing each
xi to take on any value on the unit interval [0, 1]. Relaxing this constraint, we can now formulate
the linear programming (LP) relaxation as:

min

m∑
i=1

wixi∑
i:Si3j

xi ≥ 1 ∀j = 1, 2, . . . ,m

0 ≤ xi ≤ 1 ∀i = 1, 2, . . . ,m

Fortunately, LP’s are solvable in polynomial time! However, upon solving the LP relaxation, we
may find that our LP solution is not feasible in the original IP as some decision variables may have
fractional values.

Figure 1: An example of an instance where the optimal IP solution is OPT = 2 achieved by picking
any two sets. However, the LP relaxation assigns xi = 1/2 which gives a total weight of 3/2.

If we consider the example of the small figure above, the optimal solution gives OPT = 2. However,
we can see that by assigning xi = 1/2 for each set, we can find a cover of total weight 3/2 which is
optimal for the LP relaxation. Denote the optimal solution to the LP, OPTLP . Note that since we
are relaxing a constraint (and thus making the solution space larger), it must be the case that

OPTLP ≤ OPT

for any LP relaxation of a minimizing IP.

2



So we would like to go from this fractional solution to a feasible integer solution to our IP. How
ought we go about doing this? One way is to use randomized rounding. The idea is to first solve
the LP relaxation to get a solution x = (x1, . . . , xm). Then for each xi randomly round xi to 0 or 1
with probability xi to form x∗i , and let x∗ be our new candidate solution to the weighted set cover
problem.

We see that in expectation

E[Cost(C)] = E

[∑
i∈C

wi

]
=
∑
i∈[m]

xiwi = OPTLP .

Unfortunately this random rounding won’t always produce a valid cover to our original problem.

Question: What is the probability that j is not covered by our rounded C?

P(No set that contains j was put in C) =
∏

i:Si3j
(1− xi)

≤
∏

i:Si3j
e−xi

= e
−

∑
i:Si3j

xi

≤ 1/e

where in the first line we use the inequality (1−x) ≤ e−x and in the third that
∑

i:Si3j xi ≥ 1 since
this is a constraint in our LP relaxation. This implies that each item has at least a 1− 1/e chance
of being covered with this randomized rounding. We can reason that if we randomly round our x
in this manner T = ln 4n times to produce the the potential covers C1, . . . , CT , we can then output
C∗ = ∪Tt=1Ct. We get that

E[Cost(C∗)] ≤ T ·OPTLP
since each Ci has expected value OPTLP and in the worst case all T of them are disjoint. Note

P[C∗ not a cover] ≤ ne−T ≤ 1/4.

So half of the time COST (C∗) ≤ 4T ·OPTLP and C∗ is a cover.

3 Max-SAT

Another example of how randomized rounding can be useful is in developing an approximation
algorithm for Max-SAT. The premise of the problem is that given a set of clauses

(x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) · · ·

3



how many of them can we satisfy at once? More formally, let there be m clauses of the form
Cj = (C+

j , C
−
j ) with length `j and there be n variables x1, x2, . . . xn. What is the maximum num-

ber of clauses that can be satisfied? We will begin by considering an instance of 3-SAT (`j = 3 for
all j).

With the problem stated, how do we go about developing an approximation algorithm? A naive
approach would be to randomly pick xi ∈ {0, 1} iid uniform. Under this assignment, the probability
that any clause j is satisfied is

P(clause j is satisfied) = 1− 1

2`j
= 1− 1

23
= 7/8

which then implies that E[# of clauses satisfied] = 7
8m ≥

7
8 ·OPT .

Question: Can we get a ≥ 7
8m algorithm in polynomial time? Indeed we can. The idea is for

each variable xi compute the expected number of clauses satisfied given xi = 0 and then given
xi = 1. Next, set xi to the value with the larger expectation (one will always be larger than 7

8m)
and repeat until we have found a solution. Note this is actually no longer a randomized algo-
rithm! It is an instance of a deterministic algorithm inspired by a randomized one. In the more
general case of Max-Sat (`j no longer restricted to 3), this randomized assignment strategy achieves

E[# of clauses satisfied] =
∑
j

1− 1

2`j
≥ m/2.

Now we consider an algorithm that uses the IP/LP relaxation as before. Let yj take on unit value
if the j-th clause Cj is satisfied. The IP formulation of Max-SAT is given by

max

m∑
j=1

yj

yj ≤
∑
i∈C+

j

xi +
∑
i∈C−j

1− xi ∀j = 1, 2, . . . ,m

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

yj ∈ {0, 1} ∀j = 1, 2, . . . ,m

For the LP relaxation, we now allow xi and yj to be any value on the unit interval. Solve the LP
relaxation to get solution x. As before we are going to use randomized rounding. Let P(x∗i = 1) =

4



xi. The probability that clause j is not satisfied is given by

P(No set that contains j was put in C) = P(no x∗i = 1 ∀i ∈ Cj)

=
∏
i∈Cj

(1− xi)

≤ e−
∑

xi (1)

≤ e−yj

≤ 1/e

This implies that the expected number of clauses satisfied is (1 − 1/e) · OPT ≈ 0.63 · OPT . This
is better than the m/2 from the random assignment!

However this is not as good as the randomized assignment for Max-3-SAT which is a little unsatis-
fying. The issue lies in the approximation used in the third line of (1). It isn’t tight enough. Note
that by the arithmetic mean-geometric mean inequality, we have that

∏
i∈Cj

(1− xi) ≤

(
1−

∑
i∈Cj

xi

`j

)`j

≤
(

1− 1

`j

)`j

.

Observe that in the limit `j →∞, we recover the 1/e bound.

If we plot the expected approximation ratios for each algorithm as a function of clause size, we get
Table 1.

`j probabilistic rounding:1− (1− 1/`j)
`j uniform rounding: 1− 2−`j

1 1 .5
2 .75 .75
3 .7 .875
4 .683 .9375
...

...
...

∞ 1− 1/e 1

Table 1: The expected approximation factors for the proportional random rounding and uniform
random rounding as a function of clause size.

Note that there is a trade-off in clause size and the approximation ratio! If we are presented with a
problem that has both long and short clauses what should we do? In practice we ought to compute
both

∑
j 1− (1− 1/`j)

`j and
∑

j(1− 2−`j ) and use the algorithm with the better approximation.
However, if we randomly pick which method to use, we have that

P(Cj is satisfied) =
1

2

(
1− (1− 1/`j)

`j
)

+
1

2

(
1− 2−`j

)
≥ 3

4

which implies that regardless of clause sizes, we can always achieve at least an expected 3/4 ·OPT
approximation ratio.

5


