
CS 388R: Randomized Algorithms, Fall 2021 November 30th 2021

Lecture 26: Review

Prof. Eric Price Scribe: Anirudh Srinivasan, Sai Surya Duvvuri

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture, we covered Randomized Rounding, a technique via which NP-hard problems
with an ILP (Integer Linear Programming) solution can be solved approximately. In today’ class,
we will review the list of topics covered this semester.

2 Concentration Inequalities

We looked at different concentraion inequalities that can be applied to a random variable X which
is a sum of n independent random variables 0 ≤ Xi ≤ 1.

• Chernoff Bound - X ≤ E[X] + σ
√
2 log T

δ with probability 1− δ, σ =
√
n

• Bernstein Bound - X ≤ E[X] + σ
√
2 log 1

δ +O(log(1/δ)) with probability 1− δ, σ = V ar(n)

The second term in Bernstein bound linearly varies with maxi |Xi|, which in this case is 1.

3 Quick Sort and Quick Select

Quicksort with a random pivot gives us an algorithm that takes O(n log n) is expected time.
This can be proved by looking at the probability that elements i and j are compared (P [i and
j compared] = 2

j−i+1 , and summing this up over all i and j. To prove that this happens with high
probability, we look at the number of ”good” pivot selections that happen. These are when the
splits of the array are > 3/4 of the original array.

Quickselect works in a method similar to quicksort, where a random pivot is selected, but the
recursion happens on only one of the 2 division of the array. The expected runtime for quickselect is
O(n). But, Quickselect doesn’t have a good bound on error probability, i.e there is good probability
that pivot falls in the first n/k elements of the array.

To resolve the above issue, a new algorithm is proposed, where n3/4 elements are randomly sampled
with replacement from the array and the following property is used: an element in S with rank
r.|S| has rank in the original array around [rn− n

√
log n/|S|, rn+ n

√
log n/|S|]. This property is

used to reduce the search space for finding the median.

1

4 Balls and Bins and Hashing

We covered different problems in hashing using balls and bins as an example.

• Coupon Collector - Expected and with high probability O(n log n) to get one of each n variants
of the coupon

• Birthday Paradox - Expected O(
√
n) and with high probability

√
n log n people to pick before

2 people have the same birthday

• Balls in Bins - with high probability max load across all bins is O(logn
log logn)

• Balls in Bins with 2 choices - with high probability max load of O(log log n)

• Cukoo Hashing - with high probability max load of O(1), worst case O(log n) for insertion.

• Bloom Filters - n log(1/δ) bits are used to store n words where δ is false positive rate.

• Limited Independence of Hash Functions - this concept is introduced to have weaker as-
sumptions for analysis when hash functions are used in any algorithm. Specifically, limited
independence assumes properties such as k-wise independence which results in preservation
of upto k order moments.

• Perfect Hashing - Hash all elements to a primary hash table of size n, and use a secondary
hash tables of size O(n2) for any bin that exceeds a certain size

5 Graph Sparsification and Markov Chains

Given a graph G, we can represent it by a sparse graph H where we sample edges with pe propor-
tional to the effective resistance such that the spectral norm of H is an ϵ multiplicative factor to
the spectral norm of G. This is proved using the matrix Bernstein inequality and the RV lemma.
We looked into Markov Chains and properties that make a markov chain ergodic. We also looked
into commute time and the hit time between 2 nodes, and how to compute this using Reff , the
effective resistance between the 2 nodes.

6 Computational Geometry

We covered randomized algorithms for

• Convex Hull

• Closest Pair

• Planar Point Location

In addition to these, we also covered locality sensitive hashing. This gives us a hashing algorithm
where the collision probability increases as the points are closer (P [h(x) = h(y)] ≥ P1, |x− y| ≤ r),
and decreases when the points are further apart (P [h(x) = h(y)] ≤ P2, |x − y| ≥ Cr). Using such
functions the query time complexity is nρ and space complexity is n1+ρ

2

7 Numerical Linear Algebra

When we need to solve a linear regression problem of the form AX = b, A ∈ Rn×d with a very
large n, we can sample a matrix S to reduce the dimensionality of A down to d

ϵ2
and then solve

SAX = Sb in a much faster way. S can be a simple sparse embedding, sampled from a Gaussian
or be obtained using the Fast-Johnson-Lindenstrauss-Transform. We also looked at a technique
where we can use SVD to compute a preconditioner R, which reduces the condition number of AR
after which we can solve ARy = b using conjugate gradient.

8 Randomized Rounding

When we have a NP hard problem with a solution in the form of an ILP (Integer Linear Program),
we can relax the ILP to a fractional LP which is solvable. The solution to the fractional LP can
then be rounded up/down, giving a solution to the ILP. This may not be a correct solution though
[Pr(failure) ≤ 1/e], so the above technique can be repeated multiple times to yield valid solutions,
after which the minimum one can be picked.

References

[MR95] Motwani, R. & Raghavan, P. Randomized algorithms. (Cambridge university press,1995)

3

