
CS 388R: Randomized Algorithms, Fall 2021 September 2nd, 2021

Lecture 3: Quick Sort Analysis

Prof. Eric Price Scribe: Rochan Avlur, Alex Witt

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture, we discussed the coin flip problem and through examples, we covered Additive
and Multiplicative Chernoff bounds, Benett’s Inequality and Gaussian approximations for the same.

In this lecture, we analyze Quick-Sort algorithm for both cases, when the pivot is chosen determin-
istically and at random. We discuss the implications of using Chernoff bounds on non-independent
distributions and show how Chernoff bounds can still be applied when certain conditions are met
by the distributions.

2 Quick-Sort

Quick-sort is a divide-and-conquer technique for sorting elements in a list. Quick-sort is widely
used as it is generally fast and in-place. However, it is an unstable sorting algorithm, meaning the
relative order of two equal values in the input list is not preserved after the algorithm terminates.
Given a list L with n elements indexed as L[i] for i ∈ {1, . . . , n}, Algorithm 1 and 2 illustrate the
pseudocode for quick-sort based on how the pivot is chosen.

Time Complexity. Swaps in Quick-Sort have O(n) complexity and the number of nested calls
(in best and average case) is O(log n) giving us a complexity of O(n log n). If the pivot is always
chosen as the first element and the input array is already sorted, this is the worst case for the
deterministic algorithm yielding O(n2).

Algorithm 1 Quick-sort w/ deterministic pivot choice

1: procedure detQuicksort(L)
2: s = sizeof(L)
3: if s = 0 then return []

4: x = L[0]
5: return Quicksort([y for y ∈ L[1 :] if y ≤ x])
6: +L[x]
7: +Quicksort([y for y ∈ L[1 :] if y > x])

Note: While comparing tuples, we compare the first element and then the second element.

1

Algorithm 2 Quick-sort w/ random pivot choice

1: procedure randQuicksort(L)
2: s = sizeof(L)
3: if s = 0 then return []

4: x ∈ {1, . . . , s} at random
5: return Quicksort([y for j, y ∈ enumerate(L) if(y, j) < (L[x], x)])
6: +L[x]
7: +Quicksort([y for j, y ∈ enumerate(L) if(y, j) > (L[x], x)])

3 Expected Running Time

Let T represent the total running time of randquicksort. How do we arrive at the expected
running time E(T)?

Definition. To simplify notation, we introduce two symbols, ' and
<∼. We define them as,

F
<∼ g if ∃ c > 0 s.t F ≤ c · g (1)

and,

F ' g if F
<∼ g and g

<∼ F (2)

Solution. We begin with analyzing the swap procedure in randquicksort. Assume the values
of a list L of length n are {1, . . . , n}. Let Ei,j be the event when L[i] and L[j] (elements at indices
i & j) are compared.

Our total running time can be approximated as,

T '
∑
i<j

Ei,j (3)

where,

Ei,j =

{
1,L[i] & L[j] are compared

0,L[i] & L[j] are not compared
(4)

Let us analyze the scenarios that lead to Ei,j = 1. One possibility is when either L[i] or L[j] is a
pivot. Since the pivot is compared with all values in the partition it belongs to, Ei,j = 1. The other
case is when both L[i] and L[j] are on the same side of the pivot 1. Together, the condition for
Ei,j = 1 is when L[i] and L[i] are pivots before the first pivot at index i+ 1, i+ 2, . . . , j − 2, j − 1.

Since we are equally likely to choose index i or j as the pivot, the probability of either being chosen
is,

Pr[Ei,j] =
2

j − i+ 1
(5)

1Revisit. Why?

2

Expectation of running time is,

E[T]
<∼
∑

E[Ei,j] (6)

=
∑
i<j

2

j − i+ 1
(7)

=

n∑
i=1

2 ·
(

1

2
+

1

3
+ · · ·+ 1

n− i+ 1

)
(8)

≤ 2n log n (9)

with the help of harmonic progression equality,

Hn−i+1 − 1 =

(
1

2
+

1

3
+ · · ·+ 1

n− i+ 1

)
and inequality,

Hn−i+1 − 1 ≤ Hn ≤ log n

3.1 How do we calculate the probability that quick-sort algorithm works in
O(n log n) time?

Say for instance, we want to calculate,

Pr
[∑

Ei,j > 10 · n log n
]

(10)

Here, we cannot use Chernoff bounds since the random variable’s events are not independent. In
quick-sort, Ei,j are not independent since comparing values at index i and j depends on the pivot
used to partition the .

Let us use Markov’s inequality instead to find an upper bound on the probability.

3.2 Markov’s Inequality

Let X ≥ 0. For some t > 0,
E[X] ≥ Pr[X ≥ t] · t (11)

More commonly, the above equation is written as,

Pr[x ≥ t] ≤ E[X]

t
(12)

Applying Markov’s inequality to compute the probability of Equation 10, we get,

Pr
[∑

Ei,j > 10 · n log n
]
≤ 2n · log n

10n · log n
=

1

5
(13)

How do we show T = O(n log n) with high probability (w.h.p)? Or, in other words, how do we
show that ∀c > 0, T = Oc(n log n) with probability 1− n−c?

In QuickSort, the work done per layers is O(n). Hence, we want to show w.h.p that the number of
layers is ≤ log n.

3

Lemma 1. For any fixed x, number of layers till x is a pivot is O(log n) with high probability.

Let Si be the set of elements in the ith layer in the list containing x. Si = {1, . . . , n} and we want
|SO(logn)| = 1.

We define an iteration of QuickSort as good if the pivot is chosen somewhere between 25% and
75% of the length of Si or if |Si| = 1. Let Xi = 1 represent whether or not the ith iteration of the
algorithm is good. Since there is a chance Si contains one element, it follows

Pr[Xi] ≥
1

2
(14)

Given Xi = 1, we can also consider the size of the next set Si+1. In the worst case, a pivot could
be chosen at 25% or 75% the length of the array. This would result in an |Si+1| = 3

4 |Si|, but since
this is worst case, we have the bound

|Si+1| ≤
3

4
|Si| or |Si+1| = 1 (15)

Thus, if we can achieve log 4
3
n good rounds, we will end with |Sk| = 1. The Pr[|Sk| > 1] can be

described with how many good rounds we have achieved versus how many are needed to reach
|Sk| = 12. Let the number of good rounds X be defined as X =

∑k
i=1Xi, then

Pr[|Sk| > 1] ≤ Pr[X < log 4
3
n] (16)

or the Pr[|Sk| > 1] is less than or equal to getting fewer than log 4
3
n good runs in the first k steps.

We can find the E[X] using the linearity of expectation

E[X] =
k∑
i=1

E[Xi] ≥
k

2
(17)

since E[Xi] ≥ 1
2 .

4 Chernoff Bounds Revisited

Assume X1, . . . , Xn are independent random variables taking values in {0, 1} Let X =
∑
Xi,

E[Xi] = µi, and µ =
∑
µi = E[X]. From lecture 2, we know the additive and multiplicative

Chernoff bounds are Pr[X > µ + t] ≤ exp
(
−2t2

n

)
and Pr[X > (1 + ε)µ] ≤ exp

(
−min(ε,ε2)µ

3

)
,

respectively.

Suppose Yi = 1 − Xi represents the ith event in the QuickSort algorithm is bad and does not
find a pivot within in the 25% to 75% range. Then E[Yi] ≤ 1

2 and E[Y] ≤ k
2 . Then we would like

to place a Chernoff bound on,
Pr[Y ≥ k − log 4

3
n] (18)

2Revist. Why?

4

To apply Chernoff bounds, let k = 10 log 4
3
n. Then,

Pr[Y > 9 log 4
3
n] = Pr[Y > µ+ 4 log 4

3
n] ≤ exp

(
−

2(4 log 4
3
n)2

10 log 4
3
n

)
(19)

= exp
(
−3.2 log 4

3
n
)

(20)

= n
−3.2 log 4

3
e

(21)

= n−O(1) (22)

Note: If Y < Z and Pr[Z > c] < δ, then Pr[Y > c] < δ.

4.1 Independence and Chernoff Bounds

We have applied the Chernoff bound to our QuickSort algorithm, but the issue with using Cher-
noff bounds on our problem is that the random variables Y1, . . . , Yn are not independent.

To continue using Chernoff bounds, we fall back to the corollary E[Xi] ≤ µi. We can define Yi to
be dependent on Xi (as Yi = 1−Xi) and E[Yi] = µ for Yi ≥ Xi. Also, note Yi is independent of any
Yj for i 6= j. The key idea is that complete independence among the events of a random variable in
Chernoff bound is not necessary. All we need are the events to be independent of the past events
i.e, Yi is independent of Yj for i > j.

Let us define Xi ∈ {0, 1} and E[Xi|X1 = a1, X2 = a2, . . . , Xi−1 = ai−1] ≤ µi ∀ i, a1, . . . , ai−1. We
choose Yi ∈ {0, 1} such that E[Yi] = µi. We want results in (Yi|X1, . . . , Xi−1) dominating (is larger
than) (Xi|X1, . . . , Xi−1).

All Yi are independent if (Yi|Y1 = a1, . . . , Yi−1 = ai−1) same for all ai.

Yi =


1, if Xi = 1

1,w.p µ−E[Xi|X1,...,Xi−1]
E[Xi|X1,...,Xi−1]

0, otherwise

(23)

5

