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1 Overview

In the last lecture, we studied the Balls and Bins problem [RS98]. We proved that if we randomly
throw n-balls to n-bins, the maximum load (i.e. the maximum concentration of balls in a bin) will
be O( logn

loglogn) with high probability. This was due to the fact that the expected number of bins with

i balls is approximately 2−O(i), which means that it goes down exponentially and when we get to
i = Θ( logn

loglogn), it becomes zero.

For settings like Hash Tables or Load Balancing, we want the maximum load to be as small as
possible. In the Balls and Bins problem, we were given only one choice: after randomly selecting
the bin, our only choice was to throw the ball there. Thus, it is natural to consider what would
happen if we were given two choices. Consider that we pick two bins at random, and throw the
ball to the bin with the least amount of balls. This strategy still involves only constant work per
ball and we expect it to decrease the maximum load compared to the single choice case. But how
much? This is the question we are going to answer in this lecture.

2 Problem Statement

We are given n-balls and n-bins for some n ∈ N+. For each ball, we pick two bins at random and
throw the ball to the bin that is lighter, i.e. the bin with the least amount of balls. If both bins
have equal amount of balls, we throw the ball to any of them. We repeat the process until all of
the balls have been thrown to bins.

Question: What is the maximum number of balls in a bin (maximum load) at the end of this
process?

We will first set-up some notation. We will use the term “height” of a bin to refer to the number
of balls that are already in the bin at some time step. Then, we define:

� vi(t) := number of bins of height ≥ i at step t, for t, i ∈ [n].

� ht := height that ball t ends up at, for t ∈ [n].

Given the state of the bins at time t − 1 (let it be denoted by St−1), in order for the t-th ball to
end up at height at least i, both the random bins chosen at time t must have height at least i− 1

1



after step t− 1. Formally:

P[ht ≥ i|St−1] =

(
vi−1(t− 1)

n

)2

, (1)

since we pick a bin with height at least i− 1 at step t with probability vi−1(t−1)
n .

Intuition: The square in Equation (1) is the key factor that will reduce the expected maximum

load compared to the Balls and Bins setting (in this case, we would have P[ht ≥ i|St−1] = vi−1(t−1)
n ).

Let’s assume that εn-bins have height at least i − 1 at time t, that is vi−1(t) = εn. Then, the
probability that the next ball gets to height i is (by Equation (1)) ε2. Therefore, we should expect
approximately ε2n-bins to have height at least i, as the trend established by Equation (1) suggests
(because this is true for any time t). With the same argument, we would expect ε4n-bins to have
height at least i+ 1, ε8n-bins to have height at least i+ 2 etc.

So if, for example, we had that v5(t) ≤ 1
2n (at most half the bins have height greater or equal than

5), then we would expect

v5+k(t) ≤
(

1

2

)2k

n

and so, by setting k ≥ log logn, we would get v5+k(t) ≤ 1. This shows that on expectation, the
maximum load of a bin is O(log log n), which is significantly better that the O( logn

log logn) bound we
proved for the Balls and Bins problem. Interestingly, we achieve this improvement by only doubling
the number of work per ball.

3 Formal Proof

The intuition we built in the previous section is not strict, since we essentially argue about the
final state of the system, providing an argument only about a single time step. However, the truth
is not much different from our intuition. To ensure that our analysis works, we will insert some
slackness to our claim, by defining the following quantities{

β4 = 1/4

βi+1 = 2β2i

Intuitively, the value βi will provide a (uniform over t ∈ [n]) upper bound for the fraction of bins
that have height at least i. As we will argue shortly, β4 is indeed such an upper bound for i = 4
(with probability 1). While our intuition was that the upper bound for the fraction of bins of
height i+ 1 would be approximately equal to the square of the upper bound for the fraction of bins
of height i, we insert a multiplicative slackness factor of 2, to get the following (high probability)
claim.

Lemma 1. For any c > 0, the following statement holds with probability at least 1− n−c

vi(t) ≤ βin, for any t ∈ [n] and any i ≥ 4 with βin ≥ 6(c+ 1) lnn.
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Proof. We will prove our claim via induction on i.

Basis: For i = 4, we have that the number of bins containing 4 balls is upper bounded by n/4
(with probability 1), because otherwise, the number of balls should be higher than n, which is a
contradiction. X

Step: Assume that for some i ∈ [n] (with βin ≤ 6(1 + c) loge n) the following statement holds with
probability at least 1− in−c−1, for some c > 0.

vj(t) ≤ βjn,∀t ∈ [n], ∀j ≤ i.

We will prove that the statement holds even if we substitute i with i + 1, given that βi+1n ≥
6(c+ 1) lnn.

To this end, we need a careful manipulation, since the inductive hypothesis holds only with high
probability. We will proceed with the following steps:

1. We will first provide an upper bound for the number of balls (say Y ) that have height i+1 AND
right before they are assigned to a bin, the number of variables of height i was indeed upper
bounded by βin (which does not hold almost surely, but only with high probability under
the inductive hypothesis – however under this condition we can calculate the probabilities of
interest, as we did in Equation (1)).

2. Then, we will show that Y (for which we provided the aforementioned high probability upper
bound), is also with high probability a “good” (for our purposes) representative of the number
of balls that have height i+ 1 unconditionally, due to the inductive hypothesis.

For any t ∈ [n], we set Yt := 1{(ht ≥ i+ 1) ∩ (vi(t− 1) ≤ βin)}. Then, we have that

E[Yt] = Pr[Yt = 1] = Pr[ht ≥ i+ 1|vi(t− 1) ≤ βin] · Pr[vi(t− 1) ≤ βin] ≤
≤ Pr[ht ≥ i+ 1|vi(t− 1) ≤ βin] ≤ β2i .

Consider, now Y =
∑n

t=1 Yt. By the linearity of expectation we get: E[Y ] ≤ β2i n = βi+1n/2.

Observe that Yt can only be equal to 1 given that an event ({vi(t − 1) ≤ βin}) that ensures an
upper bound for its expectation happens. Therefore, conditioning on any realization of Y1, . . . , Yt−1

would not violate the upper bound we established for the expectation of Yt. Hence (as we have
seen in a previous lecture), although (Yt)t are not independent, we may use the Chernoff bound
on Y , because we can design some family of independent random variables (Zt)t such that Zt ∼ Yt
(i.e. Zt and Yt are equidistributed) and Zt ≥ Yt almost surely (i.e. with probability 1); we then
apply the Chernoff bound on Z :=

∑
t Zt, which implies a corresponding bound for Y . We call this

method (of designing the family (Zt)t) stochastic domination (or coupling) [B88].

From the Chernoff bound, we get

Pr[Y > βi+1n (≥ 2E[Y ])] ≤ exp

(
−1

3
· 1

2
βi+1n

)
.

But we know that βi+1n ≥ 6(c+1) lnn (in fact we have selected the right hand side of this inequality
to ensure that the bound that we take from this step satisfies our purposes). Therefore

Pr[Y > βi+1n] ≤ n−c−1 .
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We have proven step 1 and we proceed with step 2.

Let Qj := {vj(t) ≤ βjn, ∀t ∈ [n]}. By the inductive step, we have that

Pr[∩j≤iQj ] ≥ 1− in−c−1 .

Also, conditioned on the event that Y ≤ βi+1n, then Qi+1 cannot be false when ∩j≤iQj is true
(almost surely), because Yt|Qi = 1{ht ≥ i+ 1}. Therefore

Pr[¬Qi+1] ≤ Pr[Y > βi+1] + Pr[¬Qi] ≤ n−c−1 + in−c−1 = (1 + i)n−c−1 ,

which concludes our induction.

Then, we observe that i ≤ n and therefore in−c−1 ≤ n−c, which concludes the proof.

Note that by definition of βi (which implies that βi = 2−2i−4−1), if i? = Θ(log log n), then βi?n =
O(log n) (and Lemma 1 only works when βin ≥ Θ(log n), so we cannot go further). Therefore, we
have that with high probability (say at least 1− n−α−1, α > 0)

vi?(t) ≤ O(log n),∀t ∈ [n] .

But we have not yet shown that (w.h.p. – i.e. with high probability) no bins have height more
than some value that is O(log log n).

We have that

Pr[ht ≥ i?] ≤
(
O(log n)

n

)2

+ n−α−1,∀t ∈ [n]

We may insert the quantifier ∃t ∈ [n] inside the probability expression by using the union bound.
We get

Pr[∃t ∈ [n] : ht ≥ i?] ≤
O(log2 n)

n
+ n−α ,

which decays almost linearly with n (if a ≥ 1). Also, this bounds the probability that there exists
some bin with height at least i? by O(log2 n/n+ n−α).

Providing a high probability claim for the same event is left as an exercise . (Hint: Consider the
probability that ht ≥ i? +K).

4 A Probability Puzzle

At the end of the lecture, the professor gave as a probability puzzle to solve (which is irrelevant to
the rest of the lecture).

Question: Assume you are given a biased coin that succeeds with some unknown probability p.
How many samples are needed in order to estimate p within a multiplicative (1± ε) bound?

The algorithm that we are going to use for the approximation will be the arithmetic mean of the
samples. Formally, we will draw n independent samples X1, . . . , Xn from the coin (recall P[Xi] = p)
and output the estimation p̂ = 1

n

∑n
i=1Xi. Now, we need to determine how large n must be in

order for the estimation to be within a multiplicative (1± ε) bound of its true value.
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Let’s assume for now that we know p ∈ [a, b] for some 0 < a < b < 1. Fix some number of samples
n and let p̂ = 1

n

∑n
i=1Xi be the estimation. We wish to compute

P[p̂ /∈ [(1− ε)p, (1 + ε)p]] = P[|p̂− p| > εp]

Observe:

� p̂ is the sum of n independent random variables Xi
n that are bounded in [0, 1n ].

� E[p̂] = E[ 1n
∑n

i=1Xi] = n 1
np = p.

By using a multiplicative Chernoff Bound, we get:

P[|p̂− p| > εp] ≤ 2e−
min(ε,ε2)

3
pn = 2e−

ε2

3
pn

since ε < 1. So, if we want the probability of failure to be at most δ ∈ (0, 1), we simply need to
take at least

n =
3 log(2δ )

ε2p

samples. Since we have assumed that p ∈ [a, b], then we know that taking n =
3 log( 2

δ
)

ε2a
samples will

give the desired guarantee.

In the next lecture, we will solve the rest of the puzzle by learning how one can do the same analysis
without assuming any knowledge on p and get the same sample complexity.
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