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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Determine the probability of a coin

Problem: Given a coin with probability p of heads, estimate p from flipping the coin

Algorithm 1: Flip coin n times. Suppose you flip the coin n times and define Xi as a random
variable where Xi = 1 if the ith flip is a heads and 0 otherwise. Define p̂ as your estimation of p
derived by dividing the number of heads by total flips.

p̂ =
n∑
i=1

Xi ∗
1

n
(1)

E[p̂] = p (2)

Suppose you want a probability estimate within εp with probability of error at most δ

Pr[|p̂− p| > εp] = Pr[|p̂− µ| > εµ] ≤ 2e−
ε2np

3 (3)

Then solving 2e−
ε2np

3 ≤ δ for n, you obtain n ≥ 3
pε2

log(2/δ)

So flip n = 3
pε2

log(2/δ) times to obtain the desired estimate

Problem: Cannot determine an appropriate value for n if you know nothing about p

If you know a range of values p could be, just choose the value in the range that requires the
most flips

Idea: Suppose you perform n = 3
pε2

log(2/δ) coin flips

E[

n∑
i=1

Xi] = n ∗ p =
3

pε2
log(2/δ) ∗ p =

3

ε2
log(2/δ) (4)

This value does not depend on p

Algorithm 2: Keep flipping coins until you obtain 10
ε2

log(2/δ) heads. I.e. stop once
∑
Xi =

10
ε2

log(2/δ) = k∗
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Then your probability estimate is p̂ = k∗

n . Define the true probability of heads as p = k∗

n∗

How good is this estimate?

Pr[p̂ > (1 + ε)p] = Pr[n <
n∗

1 + ε
] ≤ Pr[

n∗
1+ε∑
i=1

Xi > k∗] (5)

Can apply Chernoff bound to last probability

E[

n∗
1+ε∑
i=1

Xi] =
n∗

1 + ε
∗ p =

k∗

1 + ε
(6)

Pr[

n∗
1+ε∑
i=1

Xi > k∗] ≤ δ

2
holds for

k∗

1 + ε
≥ 3

ε2
log(

4

δ
) (7)

Note this analysis is just for overestimating p (why δ/2 is used), similar analysis can be done for
underestimating

2 Cuckoo Hashing

Suppose you are hasing n items into n bins. We have already covered 2 approaches:

1. Standard Hash Tables: Expected O(1) time per operation. Worst case O( log(n)
log log(n)) w.h.p.

(Recall the balls and bins analysis on max load)

2. Two Choice Approach (i.e. for each item you pick 2 bins and place the ball in the bin with less
items): Expected O(1) time per operation. Worst case is O(log log(n)) with high probability.
(Recall the two choice balls and bin analysis on max load)

Cuckoo Hashing offers:

• Expected O(1) per insertion

• Worst case O(log(n)) for insertion

• Worst case O(1) for table lookup

It does so by allowing us to evict balls, guaranteeing that each bin only contains at most 1 ball.
Similar to Two Choices, you check two cells and go to the one with less elements. However, if both
cells already have a ball, you randomly evict one of the balls. The evicted ball gets moved to the
other cell the hash function points to. If this cell is occupied as well, evict and move it, continuing
the process until the assignment is stable.
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2.1 Graph Representation of Cuckoo Hashing

We can conceptualize the assignment of items to cells using a directed graph, where the vertices
represent the cells of the hash table the edges represent the items being hashed. Since each item
hashes to 2 locations, the edge representing it will connect the 2 cells to which it hashes to (ie.
make an edge between the 2 vertices that represent the cells to which the item hashes to). The
direction of the edge determines which cell the item gets assigned to.

What can go wrong with this approach? If you have a cycle, every vertex is used by the cycle.
Therefore, if there is an edge connected to a vertex in the cycle (but not a part of it), the edge
must direct away from the cycle to maintain that each has 1 ball at most. If the other end of this
edge happens to connect to a vertex in another cycle, this creates a problem known as a ”barbell”
(two connected cycles) where it is impossible to find valid assignment.

Figure 1: Example of a barbell

2.2 Algorithm and Analysis

Algorithm: Try to insert the item, evicting and moving items as necessary. If you cannot because
of a barbell, then pick a new hash function and rebuild the table.

Thus, there are 2 things to show: (I) Rebuilding is a rare occurrence, (II) Insertion is fast on
average

2.2.1 Show rebuilding is a rare occurrence

Note that for a barbell to exist, a cycle must exist as well:

Pr[barbell exists] ≤ Pr[cycle exists] ≤
m∑
k=2

Pr[length k cycle exists] (8)

So what is the probability that a length k cycle exists? This is equivalent to the number of possible
length k cycles multiplied by the probability that the specific cycles exists. Observe that the number
of possible length k cycles is

(
n
k

)
k!
2k . This is because there are

(
n
k

)
ways to select vertices and k! ways

to order vertices. We divide by 2k to compensate for duplicates (a cycle has k starting positions
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and can run in 2 directions). Thus, we write:

Pr[length k cycle exists] (9)

= (number of possible length k cycles) ∗ (probability specific cycle exists) (10)

=

[(
n

k

)
k!

2k

](
m(
n
2

))k (11)

≤
[(en

k

)k kk
2k

] [
2m

n2

(
1 +

1

n− 1

)]k
(12)

≤
[
(en)k

1

2k

] [(
2m

n2

)k
e

]
(13)

≤ (en)k
(

2m

n2

)k
e (14)

≤
(

2em

n

)k
e (15)

Now consider the number of cycles for all k:

Pr[barbell exists] ≤
m∑
k=2

Pr[length k cycle exists] ≤
n∑
k=2

(
2em

n

)k
e ≤ 2e

(
2em

n

)2

≤ 1

20
(16)

Therefore, the probability of rebuilding is at most 1
20 .

Now let’s define T = E[time to insert all items and find collisions if one exists]. Then:

E[total time] = T +
1

20
E[total time] =

20

19
T (17)

Rebuilding only increases the expected time by a factor of 20
19 .

2.2.2 Show insertion is fast on average

Next, we try to find a better estimate for T , the time to insert all items:

T =

m∑
i=1

E[time to insert ith item] ≈ E[size of component of ith item] (18)

Claim: for any fixed vertex u, E[size of component containing u] = O(1) for m < n
100 .

We can simplify this claim to examine graphs of G(n, p), where each edge exists with p = 1
100 . This,

in turn, can be even further simpliied down to the Galtan-Watson branching process.

In the Galtan-Watson branching process, take an initial vertex and let it have d = n− 1 potential
neighbors. Then, we independently pick edges with probability p. For our case, let’s set p = 1

100d .
For each edge picked, let the graph expand to the neighbor vertex, and repeat the process on it’s
neighbors recursively.
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Figure 2: The Galtan-Watson branching process. In this example, the algorithm ends up picking
2 edges in the first layer, then 1 in the next. This process will continue recursively.

If we let C = E[number of vertices picked including root], we have:

C = 1 + dpC = 1 +
1

100
C =

100

99
= O(1) (19)

This can be applied to graphs of G(n, p). The key difference is that in G(n, p), we may have an edge
between two vertices that we have already visited. However, this will only decrease the component
size, so G(n, p) will also have O(1) component size.

Now, we generalize to the original claim by looking at a graph G

(
n, 2m

(n2)

)
. This graph has an

expected 2m edges, implying that it will have ≥ m edges with high probability. Therefore, we can
write:

E[Component size in G(n,m)] ≤ E

[
Component size in G

(
n,

2m(
n
2

))]+ n ∗ n−100 ≤ O(1) (20)

Note: We add n ∗ n−100 because there’s very a small probability that G

(
n, 2m

(n2)

)
had < m edges,

but when that happens the component size is always at most n.
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