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1 Overview

In this lecture we talked about Bloom filters. The problem we want to solve is stated as the fol-
lowing:

Problem: We want to store a set S of n items, where S ⊆ [U ] (assuming U ≥ n2).

We also want to support the following operations:

Operations:
insert(x) : S ← S ∪ {x}. This operation inserts a new item x to the stored set S.
query(x) : is x ∈ S? This operation checks whether an item x is stored.

2 Ways to store the set S

We have many ways to store the set S. To be more specific, we can use a list, a membership
array, a hash table or a Bloom filter (we will define it later). The table below gives an overview
of how these methods compare to each other in terms of space complexity (number of bits needed
for storage), insertion time and query time.

Method Space Complexity Insertion Time Query Time

List n logU bits Θ(1) (if each item is
fresh)

Θ(n)

Membership Array U bits Θ(1) Θ(1)

Hash Table O(n logU) bits O(1) worst case O(1) in expectation

Bloom Filters O(n) bits
(+O(U logU)) if
we consider hash
functions

O(1) O(1) but with small constant
failure probability

2.1 Lower space complexity bound

Note that for deterministic methods, Ω(n logU) bits space is necessary. The number of differ-

ent set S is
(
U
n

)
≥
(
U
n

)n
= 2n log U

n ≥ 2
1
2
n logU . This means we need at least 2

1
2
n logU different

representations. Therefore, 1
2n logU bits are necessary.
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3 Bloom filters

The bloom filter will output YES with probability 1 if x ∈ S and will output NO with probability
1− δ if x /∈ S. In other words, Bloom filters approximate set membership queries. There are a few
examples of real-life applications of Bloom filters.

Examples:
- Google Chrome uses Bloom filter to store the set of malicious websites.
- Database asymmetric joins.
- Bitcoin light wallets use Bloom filter to store wallet IDs of interests.

A way to construct a Bloom filter is to create a hash table with size m, each location in the
hash table has 1 bit, either 1 or 0. Then we pick h1, h2, · · · , hk independent hash functions from
U to [m]. Now we define the operations to be:

insert(x) : yhi(x) = 1, ∀i ∈ [k]. We set the k locations in the hash table given by k hash
values to be 1 (there could be less than k locations due to repetitive hash values).

query(x) : return mini yhi
(x). Only when all locations corresponds to all k hash values in the

hash table has value 1, we return 1. Otherwise, we return 0.

This Bloom filter will take O(m) bits for space and each insert or query takes O(k) time.

Now we try to pick k to minimize the failure rate δ. Intuitively, we want to maximize the in-
formation each hash table bits contain, which means we want each hash table bit has 1

2 probability
to be 1. This gives the maximum entropy and the maximum mutual information. Formally, we
have for any hash table bit yj ,

P(yj = 0) =

(
1− 1

m

)kn

≈ e
−kn
m (=

1

2
by intuition.)

The probability above comes from that all kn hash values miss the location j. Let Y =
∑m

j=1 yj .
The random variable Y denote the number of hash bits that are 0. The expectation value of Y is

E(Y ) = m
(

1− e−
kn
m

)
.

With high probability, Y = E(Y )±O(
√
m logm). For any x /∈ S,

P(query(x) = 1) =

(
Y

m

)k

≈
(

1− e−
kn
m

)k
= δ.

To minimize δ, we need to get

arg min
k

(
1− e−

kn
m

)
=
m

n
arg min

z

(
1− e−z

)z
.

Solving for the above we get z = ln 2 and k = m
n ln 2. Then δ = 2−k = 2−

m
n

ln 2 ≈ 0.618
m
n .

For example, if we choose t = 16, we have P(yj ≥ 16) ≤ 1.4× 10−15. By union bound, P(Any yj ≥
16) ≤ m · 1.4× 10−15 and is small for m < 109.
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3.1 Bloom Filter With Deletion

Ideally, we want to introduce delete to the set of operations:

delete(x) : S ← S − {x}. This operation takes out item x from the stored set S.

Note that the algorithm introduced in the above section does not accommodate deletion as any of
space that the hash function occupies can also be concurrently occupied by another hash.

We can make a simple modification by replacing each entry in the hash table from a binary switch
to a counter. This will lead to the below modification:

insert(x) : yhi(x)+ = 1, ∀i ∈ [k]. We increment the k locations in the hash table given by 1.

query(x) : return mini yhi
(x) >= 1. Only when all locations corresponds to all k hash values

in the hash table has value 1 or above, we return 1. Otherwise, we return 0.

delete(x) : yhi(x)− = 1, ∀i ∈ [k]. We decrement the k locations in the hash table given by
k hash values by 1.

Duplicate Item Note although the above formulation allows for deletion, it will not accommo-
date duplicate item due to repeating value of the counter.

Analysis Note that we will need to assume log2(t) bits for the storage of the counter instead of
the previous 1 bit requirement. We can compute, for given n,m, k, the probability that a single
space in hash table yi, obtain a value that exceed t.

P (yi ≥ t) ≤
(
nk

t

)
1

mt

≤ (
enk

t
)t

1

mt

= (
enk

mt
)t

= (
e ln(2)

t
)t . substitute k’s value from previous derivation

Lets assume that t = 16, this means that we will need 4 bits in storage. With this in mind, the
probability that a cell exceed 16 is

P (yi ≥ 16) ≤ 1.4× 10−15

With m entries in the hash table, by the union bound we have:

P (yi ≥ 16∀i ∈ m) ≤ m · 1.4× 10−15

If we set m to be at most 109, the above equation evaluates to a very small failure rate.
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4 Independence

In class, we also started talking about how to choose hash functions from a family. This topic will
proceed into the next lecture - hence for detail please refer to the note of next class.

We have two options when it comes to picking a hash function

1. Full Independence hashes are random oracle model. Hashing computation is essentially
free. (i.e. flipping a coin)

2. Limited Independence we have to pay in space for hash function (e.x. coccho hashing)

These two options offers different advantages:

4.1 Full Independence

1. Sometimes totally fine (i.e. in load balancing situation)

2. Sometimes you can approximate it. (i.e. entropy in input or cryptographic hash functions)

3. This method often provide better bounds

4.2 Limited Independence

1. Honest about cost of hash (which means that we can get gurantess over the inputs)

2. Per hash function, O(k) words of space can yield k-wise independence. Sets of size ≤ k
behaves as if independent.

3. E.x cocco hash yields log(n) independence in standard implementation (Professor also men-
tioned that some more complicated implementation may yield better result).
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