Homework 10

Randomized Algorithms

Due Wednesday, November 29

1. In class we showed that network coding works well on a static graph. The key property was that, if vertex v is “aware” of a vector u in one round, then each neighbor becomes aware of it in the next round independently with probability at least $1 - 1/q$. We showed that this implies that after R rounds, the destination t becomes aware of each u with probability $1 - q^{-C_{s,t} R (1 - \epsilon)}$, where $C_{s,t}$ is the (s, t) min cut and suitably large parameters ($q > 2^{O(1/\epsilon)}$ and $R > O(n/\epsilon)$).

In this problem we extend this to dynamic graphs. We instead suppose that the graph changes arbitrarily in every round, with the condition that the (s, t) min cut is at least C in each round.

(a) For any u that s is aware of, at the beginning of round i let S_i be the set of vertices that are aware of u. Show that, if $t \notin S_i$, then over the randomness in round i we have

$$\Pr[S_{i+1} = S_i] \leq q^{-C}.$$

That is to say, almost always at least one new vertex will become aware of u.

(b) Show that, after $R \geq O(n/\epsilon)$ rounds and with $q \geq 2^{O(1/\epsilon)}$,

$$\Pr[t \notin S_R] \leq q^{-CR(1 - \epsilon)}.$$

(c) Suppose that s starts with a k-dimensional subspace. Show that if $R > O(n/\epsilon)$ and $R > (k/C)(1 + O(\epsilon))$, there is a large probability that t learns s’s subspace in its entirety.

(d) (Optional) Show that, in general, no algorithm can transmit a dimension-k subspace from s to t in $R < (1 - \epsilon)k/C$ rounds.