1 Overview

We consider the idea of random sampling and show an application for median finding.

2 Sampling Example

Goal: Estimate π by inscribing a circle inside a square of side length 2 and sampling random points.

$$Pr[\text{in circle}] = \frac{\pi}{4}, \quad O\left(\frac{1}{\epsilon^2} \log \frac{2}{\delta}\right) \text{ samples needed to estimate to } \epsilon \text{ precision with } 1 - \delta \text{ confidence.}$$

Can be extended to any polytope/polyhedron, but if the object is small with respect to the bounding box/cube, we need to take a number of samples until we have seen at least some number of points inside the object. The number of samples needed remains linear with respect to the object’s area/volume.

3 Median Finding

Goal: Given x_1 to x_n array of n unsorted real numbers, return the median number.

More general problem: return the r^{th} smallest element.

Some algorithms that can be used:

3.1 Quicksort

We sort the list and return return the median. The runtime is $O(n \log n)$.

3.2 Quickselect

We use quickselect with one recursive call on the same side as the median. The expected runtime is $O(n)$, and is $O(n \frac{\log n}{\log \log n})$ whp.

Proof. We show that Quickselect is $O(n)$ expected, $O(n \frac{\log n}{\log \log n})$ whp. Expected:
Similar to quicksort analysis, the pivot can shave off $\frac{1}{4}$ of the elements with $\frac{1}{2}$ probability. Therefore it takes $O(1)$ time for an array to go from size n to size $\frac{3}{4}n$. From a geometric sum with common ratio $\frac{3}{4}$, the expected runtime is indeed $O(n)$.

With High Probability:
We note that in this problem, the probability of all of the first k choices for a pivot lie before $\frac{n}{k}$ is at least $1/k^k$.

If this case happens, then k pivots has reduced our array to size $n(1-1/k)^k \approx n/e$.

Therefore, there’s a $1/k^k$ chance of taking $\Omega(kn)$ time and thus a $1/n$ chance of taking $\Omega(\frac{n \log n}{\log \log n})$ time.

As such, we cannot show that Quickselect is $O(n)$ time and expected $1/k$ time.

Applying additive Chernoff bound, we have $\Pr[|S| \leq \frac{|S|}{2} + t] \leq e^{-2t^2/|S|}$ and $\Pr[|S| \geq \frac{|S|}{2} - t] \leq e^{-2t^2/|S|}$.

Choose $t = \sqrt{|S| \ln n}$, so $\frac{|S|}{2} - t \leq \text{rank}_S(\text{med}(X)) \leq \frac{|S|}{2} + t$ w.p. at least $1 - O(1/n^2)$.

Let two elements whose ranks in S are $\frac{|S|}{2} - t$, $\frac{|S|}{2} + t$ be s_{lr}, s_{hr} respectively. With at most 2n time and expected 1.5n time, we partition X into three subsets: X_l: less than s_{lr}, X_h: more than s_{hr}, and X_b: between s_{lr} and s_{hr} (For each element in X, we randomly choose which of s_{lr}, s_{hr} to compare first).

For any rank-αn element in X, its rank in S is $\alpha |S| \pm \sqrt{|S| \ln n}$ w.p. So choose α such that $\alpha |S| + \sqrt{|S| \ln n} = |S|/2 - \sqrt{|S| \ln n} \Rightarrow \alpha = 0.5 - 2 \sqrt{\frac{\ln n}{|S|}}$, then the (αn)-th ranked element in X
is in X_l w.h.p. Similarly, for $\alpha' = .5 + 2\sqrt{\frac{\ln n}{|S|}}$, the $(\alpha'n)$-th-ranked element in X is in X_l w.h.p. So X_b has at most $\frac{4n\ln n}{\sqrt{|S|}}$ elements w.h.p. Choose p is constant, so $|X_b| = \Theta(\sqrt{\ln n})$ whp. We can figure out the median by sorting X_b since we know the size of X_l and X_h.

References