
CS 388R: Randomized Algorithms, Fall 2023 November 1st, 2023

Lecture 20: Markov Chains II; Hitting and Cover Times

Prof. Eric Price Scribe: Bennett Liu

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we finished up our discussion of graph sparsification and began the discussion of
Markov Chains. Specifically, we defined the idea of an ergodic Markov Chain and the Fundamental
Theorem of Markov Chains. We ended by briefly discussing random walks in undirected graphs.

In this lecture we continue the discussion of random walks, specifically providing an exact formula
for commute time and bounding cover time within a factor of O(log n).

2 Some Definitions

We can begin by defining several values. Some of these were covered in the previous lecture but
are included for completeness.

Definition 1. P is a transition matrix, representing our graph. We define the weights of this
transition matrix as:

• Puv = 1
d(u) if v ∈ N(u), where d(u) is the degree of the vertex u.

• Alternatively, we can say that P = D−1A.

Definition 2. The hitting time, huv, is the expected time to hit v on a random walk beginning from
u.

Definition 3. The commute time cuv is equal to the expected time to begin at u, hit v, then hit u.

• This can be represented as cuv = huv + hvu

• We will show that cuv = 2mRuv.

Definition 4. The cover time, Cu(G) is the expected time to cover G starting from u.

Specifically, the starting node matters in examples such as the lollipop (a fully connected graph
connected to a chain of nodes). The cover time beginning at the end of the lollipop’s stick is less
than beginning in the candy part, as it is easier to move from the stick to the candy than vice versa.

Definition 5. The effective resistance between u and v is Ruv = (eu − ev)>L+
G(eu − ev)

1



3 Computing Commute/Hitting Time

We seek to prove that cuv = 2mRuv.

Physical intuition Define huu = 0 and consider injecting d(v) current at each vertex v.

Note that this adds a total of
∑

v d(v) = 2m current injected into the graph. Given that our origin
is u, we will remove 2m current at our source node u, balancing out the current. This current is
represented by the vector i.

In this graph, the induced voltages are given by x = L+
Gi + c, where c is some constant.

We claim that we can choose a c such that our voltage xu = 0 and in general, the voltage xv = hvu
for all v.

We can prove this by analyzing the hitting time of u from v in terms of neighboring hitting times.
We proceed to each neighbor with probability 1

d(v) , thus:

hvu =
∑

w∈N(v)

1

d(v)
(1 + hwu)

hvu = 1 +
1

d(v)

∑
w∈N(v)

hwu

1 = hvu −
1

d(v)

∑
w∈N(v)

hwu

d(v) = d(v)hvu −
∑

w∈N(v)

hwu

d(v) =
∑

w∈N(v)

(hvu − hwu)

If xv = hvu, then the difference in voltages, xv − xw = hvu − hwu is the current between v and w.
Then the net current at node v is

∑
xv − xu = d(v), as defined, so we can say that xv = hvu.

We now continue with our analysis of the cover time. By definition, cuu′ = huu′ + hu′u. Let
xv = hvu and x′v = hvu′ .

X = L+
G(d− 2meu) + c

X ′ = L+
G(d− 2meu′) + c′

This means that
(x− x′) = 2mL+

G(eu′ − eu) + (c− c′)

We can then substitute this into our definition of commute time.

cuu′ = huu′ + hu′u

Note that we defined hu′u′ = huu = 0.

cuu′ = (hu′u − hu′u′)− (huu − huu′)

2



cuu′ = (xu′ − x′u′)− (xu − x′u)

cuu′ = (x− x′)>(eu′ − eu)

We can now substitute the previous definition (x−x′) = 2mL+
G(eu′ − eu) + (c− c′). Given that the

constants c− c′ have the same result when they are multiplied by eu′ and eu, they cancel out.

cuu′ = 2m(eu′ − eu)>L+
G(eu′ − eu)

Notably, we defined effective resistance to be Ruv = (eu− ev)>L+
G(eu− ev), so we can substitute to

get that cuu′ = 2mRu′u.

Bounding Cover Time

Next, we investigate bounding Cu(G).

A loose bound For any spanning tree, one way to tour a graph is to walk around a spanning
tree. For each edge in the spanning tree, we can view this as walking across, then later walking
back. Thus, this would take

∑
(u,v)∈tree huv + hvu =

∑
(u,v)∈tree cuv time.

Given that the effective resistance is always ≤ 1, we can bound cuv = 2mRuv ≤ 2m. This means
that Cu(G) ≤ 2m(n− 1)

This is tight for lollipop and line but not for a clique, where a spanning tree is far more restrictive
than the graph itself.

Tighter bounds As the previous bound isn’t very tight for some examples, we seek to establish
tighter bounds that also work for the case of denser graphs like cliques.

Define Rmax to be the maximum resistance in the graph, Rmax = maxu,vR(u,v)∈edges(G).

We claim that we can bound C(G) with

mRmax ≤ C(G) . mRmaxlogn

Note that in a line, Rmax is O(n), but for a clique, it is much smaller, providing a better bound.

Lower bound proof Let (u∗, v∗) be nodes that have Ru∗v∗ = Rmax. As established previously,
we know the cover time:

cu∗v∗ = 2mRmax = hu∗v∗ + hv∗u∗

Thus, we can guarantee that
max(hu∗v∗, hv∗u∗) ≥ mR

This shows that there is at least one pair u, v such that huv ≥ mR. For any such pair, we know
that any cover beginning at u must travel to v, so we can say that Cu(G) ≥ huv ≥ mRmax.

3



Upper bound proof For all u, v, we know that cuv = 2mRuv, so

cuv ≤ 2mRmax

Since huv ≤ cuv, we can also say that

huv ≤ 2mRmax

We claim that after O(mRmax log n) time, we have visited an arbitrary node v with high probability.

We already know that the expected time to reach v from u is less than 2mRmax, the maximal
commute time.

Thus, the probability to reach v in the first 4mRmax steps ≥ 1
2 . If this fails, we can repeat the

process and we again reach v with probability ≥ 1
2 .

If we repeat this process O(log(n)) times, we have a (12)c log(n) ≈ 1
nc probability of failure.

Union bounding this failure probability over all nodes, we have a 1
nc−1 probability of failure.

Thus, after repeating this O(mRmax log n) times, we succeed with high probability.

This means that C(G) . mRmax log n.

Application: s− t Connectivity

We can apply the first result to determine if two nodes s and t are connected within a small space.

The traditional method for accomplishing this task is to run a DFS or BFS from one node, searching
for the other. This takes O(m) time (as we may need to consider crossing each edge) and O(n)
space.

However we can instead perform this with much less space by performing a random walk beginning
at s. This allows us to only store the specific node that our algorithm occupies, which uses O(log(n))
memory. If t is reachable, we expect to see it after C(G)≤O(mn) time.

4


