
CS 388R: Randomized Algorithms, Fall 2023 November 29, 2023

Lecture 26: Randomized Rounding

Prof. Eric Price Scribe: Sameer Gupta, Mark Wen

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Set Cover

Suppose we have some universe U of n items. We have some sets S1, S2, . . . , Sm ⊆ U , weighted as
w1, w2, . . . , wm > 0. A set of indices C ⊆ [m] is a cover if

⋃
i∈C

Si = U . The cost of a cover is
∑
i∈C

wi.

Our goal is to find a cover with minimum cost.

One example is edge cover, which asks us to find a set of edges that covers every vertex. Similarly,
a vertex cover is a set of vertices that covers every edge. Both of these problems can be represented
as set covers. Vertex cover is NP-hard, so set cover must also be NP-hard. Thus, we want to find
some approximation of the answer. Specifically, the cost should be at most some multiplicative
factor α above the optimal. Formally, find some cover C such that cost(C) ≤ α ·OPT where OPT
is the min cost cover.

For edge cover, a trivial lower bound is V
2 . We can greedily pick some edge next to each vertex,

and this gives us a cover of at most V − 1. Thus, we get a 2-approximation. This strategy works
because the sizes of the sets in the cover are small.

2 Randomized Rounding

Randomized rounding helps us solve more general problems. First, we write the proble mas an
integer linear program. We then relax the constraints to fractional linear programs, and then we
round to an integer solution. By rounding, we lose some factor from the optimum.

Since we fractional LP contains a superset of the solution space of an integer linear program, we
know α · OPTLP ≤ α · OPT , so if we can find a C such that Cost(C) ≤ α · OPTLP , then we are
good

To represent set cover as a linear program, we say xi ∈ {0, 1}, where xi = 1 if i ∈ C. We are trying
to minimize the sum of weights

∑
wixi, and our constraints are

∑
i:j∈Si

xi ≥ 1 ∀j ∈ U .

To convert this to a general linear program, we allow xi ∈ [0, 1]. We can then use some polynomial
time algorithm to find the solution quickly. The optimum found by linear programs will be less
than the integer linear program optimum, which is the true optiumum.

As an example for where rounding doesn’t work, suppose we have three vertices in a triangle. The
minimum edge cover is 2, but the linear program gives an output of 3

2 by assigning 1
2 to each edge.

To round our solution without running into edge cases, the idea is to randomly round the fraction.
One approach is to round to x̂i = 1 with probability xi and to x̂i = 0 with probability 1 − xi,
independently for all i. We don’t want to just round to the closest integer. Suppose we have a

1



single edge covered by multiple sets. The linear program output might assign a small weight to
each set, and so it would round each of the values down. By randomly rounding, there is a decent
chance that at least once of the indices will be included.

To bound the probability that this gives a valid solution, the probability of some element j being
uncovered is ∏

i:j∈Si

(1− xi) ≤
∏

i:j∈Si

e−xi

= exp

∑
i:j∈Si

−xi


≤ 1/e.

The expected cost is close to optimal to the LP, but the chance of some vertex being uncovered is
actually pretty high.

Now, suppose we repeat this T times, and let x̂i = 1 if any of the roundings included Si. The
expected cost is at most T ·OPTLP, and the probability j is uncovered is e−T . If we set T = log(4n),
then the probability any element is uncovered is at most 1

4 . By Markov’s inequality, P[cost(x̂) ≥
4T OPTLP] ≤ 1

4 . Thus, at least 50% of the time, we get a cover of cost at most 4T OPTLP. It is
actually NP-hard to get better than a log n approximation for set cover.

3 Max-SAT

In Max-SAT, we have a series of m clauses Cj = (C+
j , C−

j ), with length ℓj . We have n variables in
total. Our question is to find the maximum number of satisfiable clauses at the same time. This is
harder than 3-SAT because we can just directly represent 3-SAT in this problem and check if the
maximum equals m, so this is NP-hard.

To try to solve the 3-SAT case, we can just randomly set xi to uniform random values. The chance
that a clause is unsatisfiable is 1

8 , so the expected number of satisfied clauses is 7
8 . Thus, we expect

a 7
8 -approximation.

The issue is that we have no bounds on how this concentrates around the mean. One way to fix
this is to do derandomization. We first try x1 = 0 and x1 = 0, and see the expected number of
satisfied clauses. We can then compute the expectation given a fixed value of x1, and we choose
the branch that gives us at least 7

8 in expectation. Doing this repeatedly gives us at least an 7
8

approximation.

In general, as we increase the clause size, we get closer to the optimum. Our expectation is actually∑
j(1−2−ℓj ). As long as ℓj ≥ 3, this works well. However, the expectation is low for smaller values,

and we would expect that this shouldn’t be an issue since Max-2-SAT is solvable. To address this
issue, we construct a linear program for the short clauses and do randomized rounding.

Let yj for j ∈ [m] represent if the jth clause is satisfied, and let xi for i ∈ [n] represent if the ith

2



variable is 1. We are trying to maximize
∑

yj , and our constraints are

yj ≤

∑
i∈C+

j

xi

+

∑
i∈C−

j

1− xi

.

We also have xi, yj ∈ {0, 1} in the integer variant, but we relax this to xi, yj ∈ [0, 1] so that we can
solve it. Assume the original expression was fully satisfiable, which means the optimal is yj = 1 for
everything. Given a fractional solution to SAT, we try setting x̂i = 1 with probability xi. We now
measure the probability that some clause is not satisfied, which is ∏

i∈C+
j

(1− xi)


 ∏

i∈C−
j

(1− (1− xi))

 ≤
∏
i∈C+

j

e−xi
∏
i∈C−

j

e−(1−xi)

= exp

−
∑
i∈C+

j

xi −
∑
i∈C−

j

(1− xi)


≤ e−1

= 1/e.

Thus, the expected number of satisfied clauses is
(
1− 1

e

)
m ≈ 0.63m. This is not a very good

bound. To improve this, we can look at the length of the list as well. With this, we have ∏
i∈C+

j

(1− xi)


 ∏

i∈C−
j

(1− (1− xi))

 ≤


(∑

i∈C+
j
(1− xi)

)
+
(∑

i∈C−
j
(1− (1− xi))

)
ℓj

ℓj

=

(
1−

(
∑

i∈C+
j
xi +

∑
i∈C−

j (1−xi)
)

ℓj

)ℓj

≤
(
1− 1

ℓj

)ℓj

.

Now, we can compute the probability of failure depending on the length. We get

xj independent random rounded LP random choice

ℓ 1− 2−ℓ 1−
(
1− 1

ℓj

)ℓj
average

1 .5 1 .75
2 .75 .75 .75
3 .875 .7 .82
4 .94 .683 .83

By combining both of the strategies, we have a higher chance of success than if we just used one of
them. The first probability approaches 1 and the second probability approaches 1/e, so the average
is about .81.

3



Suppose we don’t know that the expression is fully satisfiable. We want to compare the proability

of failure, which is now
(
1− yj

ℓj

)ℓj
, with yj itself. Specifically, we are comparing

∑
j

(
1− yj

ℓj

)ℓj
with

∑
yj . If ℓ = 2, then we have

∑
1−

(
1− yj

2

)2
=
∑

yj −
y2j
4

=
∑

yj ·
(
1− yj

4

)
≥ 3

4

∑
yj .

Thus, the ratio works out for this case.

4


	Set Cover
	Randomized Rounding
	Max-SAT

