1 Overview

In last lecture we covered Game Tree Evaluation.

In this lecture, we are going to explore 3 interesting problems:

- Treaps
- Balls and Bins
- Coupon Collector Problem

2 Treaps

Problem Definition: We must construct a randomized data structure with the properties of a binary search tree and heap.

Construction: First, we assign a random weight to each element. In a recursive manner, we pick the smallest weight as the root and propagate nodes to the left or right subtree based on their random weight.

Operations: Each insert and remove operation on the treap must preserve the weighted structure. The treap supports dynamic operations, meaning that the state is a randomly constructed BST at all times.

Does this remind you of anything else? Quicksort! We similarly pick a random element and split into left and right partitions.

We know that the runtime of quicksort is $\sum_{x \in T} \text{depth}(x)$, meaning an average time complexity of $O(n \log n)$.

Maximum Depth Analysis: We must show that the maximum depth is $O(\log n)$ with high probability \implies Quicksort is $O(n \log n)$. This analysis will be rather simple and not so tight.

We will be able to show that the depth, with high probability, is $1 - \frac{1}{n^c}$, where c is a constant!
Let us define $d(x)$ as the depth of some element x and l as the “layer”.

$$Pr[\max d(x) \geq l] \leq n - \max_{x \in X} Pr[d(x) \geq l]$$

It suffices to show that depth of x for all x is $O(\log n)$. Let x be random element. We first start out with $k_1 = n$ in x’s subtree at layer 1. After picking an element: k_i elements in x’s subtree at layer i. Let $k_i = 0$ if x is at layer before i. $d(x)$ is max i such that $k_i \geq 1$. We know, therefore, that:

$$Pr[d(x) \geq l] = Pr[k_l \geq 1] \quad \text{(at layer } l \text{ there is at least 1 element)}$$

Can we show that k_l is large with small probability?

$$k_1 = n$$

$$Pr[k_2 < \frac{3}{4}k_1] \geq \frac{1}{2}, \text{regardless of } x$$

If partitioned element is between the first and third quartile elements it always works, and the probability of having that is $\frac{1}{2}$.

For all i, $Pr[k_i \leq \frac{3}{4}k_{i-1}] \geq \frac{1}{2}$, regardless of choices made in ALL previous rounds.

Define z_i to be 1 if $k_i \leq \frac{3}{4}k_i$ for all i and 0 otherwise.

$$Pr[z_i] \geq \frac{1}{2} \quad \text{(same conditioned on all previous } z)$$

$$Pr[k_l \geq 1] \geq Pr[\sum_{i=1}^l z_i \leq \log \frac{3}{4} n]$$

Chernoff Bound: We may now attempt to use a Chernoff Bound. We know that the expected sum is at least $\frac{l}{2}$.

$$Pr[\sum_{i=1}^l z_i \leq E - (\frac{l}{2} - \log \frac{3}{4} n)] \leq \exp(-\frac{2(\frac{l}{2} - \log \frac{3}{4} n)^2}{l}) \quad \Rightarrow \quad \text{If } l \text{ is big (greater than } 8c \log n, \text{this value becomes } e^{-\frac{l}{8}} \text{ and probability of failure is } n^{-c}).$$

We may conclude that the depth, therefore, is order of $\log n$.

Can we really conclude this though? We have a “small” issue. We can only apply Chernoff Bound on events that are independent. However, z events are not independent → how do we solve this?
This statement is independent: \(Pr[z_i] \geq \frac{1}{2} \) (same conditioned on all previous \(z \)); The one half is guaranteed no matter what happens prior.

Possible Solutions:

1. Find a statement of Chernoff that handles it! (Consult literature)

2. Use Azuma’s Inequality (involves martingales): Left as exercise to reader (go on wikipedia)

3. Use Stochastic Domination

Ex: Stochastic Domination

Given all \(z \) variables, \(Pr[z_i|\text{previous } z's] \geq \frac{1}{2} \)

There exists variables \(y \) coupled to \(z \), joint distribution, such that:
\(y_i < z_i \) and \(Pr[y_i|\text{previous } y's] = \frac{1}{2} \)

The \(y \) variables are independent and therefore Chernoff bound applies to \(y_i \).

Additionally, the sum probability of \(z \) is less than sum probability of \(y \), and therefore the original conclusion holds.

3 Coupon Collector

Problem Statement: There are \(n \) distinct Pokemon cards. There are cereal boxes that come with a random Pokemon card. How many cereal boxes does one need to buy to “catch them all”?

\(T_i = \) time it takes to get the \(i^{th} \) new item

Expected Value: We know that \(E[T_1] = 1, E[T_n] = n \). At the \(i^{th} \) item there are \((n + 1 - i)\) good items, meaning:

\[
E[T_i] = \frac{n}{n+1-i}
\]

\[
E[\Sigma T_i] = n(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} \cdots + 1) = n \cdot H_n = \Theta(n \log n)
\]

We will revisit this problem later!
4 Balls and Bins

Problem Statement: We randomly put \(n \) balls into \(n \) bins: what happens? What are some properties about how the balls are distributed across the bins?

Some questions to address:

1. What is the max load of a bin with high probability?
2. What is the average load over balls?

Question 1: Max Load

Max load is at most \(n \) (obviously)

What about with high probability?

Union bound max load: \(\Pr[\max x_i \geq l] \leq n \cdot \Pr[x_i \geq l] \)

Additive Chernoff bound:

\[
z_i = 1 \text{ if ball } i \text{ lands in bin 1.}\\

x_1 = \sum z\\

\Pr[x_1 \geq 1 + t] \leq e^{-\frac{2t^2}{n}}, t = \sqrt{n \log n} \text{ with high probability}

Multiplicative Chernoff bound:

\[
\Pr[x_1 \geq (1 + t)l] \leq e^{-\frac{t^2}{2n}}, e^{-\frac{t}{2}} \leq n^{-c} \text{ for } t = O(\log n)
\]

Bennett’s inequality can give a better bound!

Direct calculation:

\[
\Pr[x_1 \geq l] \leq \binom{n}{I} \frac{1}{n^I}
\]

Bound binomial coeff: \(\binom{n}{k} \leq \binom{en}{k} \leq \binom{en}{k}^k \)

\[
\Pr[x_1 \geq l] \leq \left(\frac{en}{I} \right)^I \frac{1}{n^I} = \left(\frac{e}{I} \right)^I
\]
\[Pr[x_i \geq l] \leq n \cdot (\frac{\xi}{e})^l \]

\[(\frac{\xi}{e})^l \leq n^{-c} \]

\[l \log(\frac{1}{e}) = c \log n \]

\[l = \frac{\log n}{\log \log n} \]

\[\text{LHS} = A \frac{\log n}{\log \log n} (\log \log n - \log \log \log n + \log \frac{A}{\epsilon}) = \Theta(\log n) \ldots \text{black magic} \]

\[\max x_i = O(\frac{\log n}{\log \log n}) \text{ with high probability.} \]

We will explore problem 2 next lecture!

\textbf{References}