
CS 388R: Randomized Algorithms, Fall 2023 September 20th, 2023

Lecture 9: Limited Independence

Prof. Eric Price Scribe: Alexia Atsidakou

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the previous lectures we discussed hash functions h : U → [m] that are uniformly random. This
implies that it takes U logm space to remember the functions, which can be bigger than the hash
table itself. This issue can be addressed using Limited Independence. However, the latter is not
always a better choice. Below we mention some cases where each option is preferable.

Pros of Full Independence Pros of Limited Independence

In some cases you don’t need to remember the
hash functions e.g. in load balancing (I don’t
care which machine runs each job, as long as it
it scheduled).

For hash tables, you can actually store the hash
function.

Hash functions may approximate fully random
case: (i) if inputs have sufficiently entropy, (ii) if
we have cryptographic hash functions. If so, full
independence is a better model of the behavior.

If we have k-wise independence, i.e. sets of size
k behave as if fully independent, then let Xi =
elements in bin i. Then, suppose we store n
elements. We have that

E
(
Xk

i

)
= E


 n∑

j=1

1{h(j) = i}

k


only depends on k variables at a time. So, if we
can bound the k-th moment we can get concen-
tration guarantees (by Chebyshev).

By standard balls and bins analysis:

E (maxXi) = logn/ log logn

Obtained guarantees are of order:

maxXi ≤ n1/k

2 Definitions

We begin with some definitions of limited independence.

Definition 1 (Universality). A family of hash functions H = {h : U → [m]} is called universal if
∀x, y ∈ U with x ̸= y,

P (h(x) = h(y)) ≤ 1/m.

1

Family H is called ϵ-approximately universal if ∀x, y ∈ U with x ̸= y,

P (h(x) = h(y)) ≤ (1 + ϵ)/m.

Bound query time with universality. We show that universality suffices to bound the expected
query time in hashtables. Suppose we hash a set S of n items to [m], then

E (time to query some key x) ≤ E (# items y ∈ S s.t. h(y) = h(x) + 1)

≤
∑
y∈S

P (h(y) = h(x)) + 1

≤ n
1 + ϵ

m
+ 1,

which is O(1) for n = O(m).

Definition 2 (Pairwise Independence). A family of hash functions H = {h : U → [m]} is called
pairwise independent if ∀x, y ∈ U with x ̸= y and s, t ∈ [m],

P (h(x) = s ∩ h(y) = t) ≤ 1/m2.

We call H ϵ-approximately pairwise independent if

P (h(x) = s ∩ h(y) = t) ≤ (1 + ϵ)/m2.

Definition 3 (k-wise Independence). A family of hash functions H = {h : U → [m]} is k-wise
independent if ∀x1, . . . , xk ∈ U with every xi ̸= xj and s1, . . . , sk ∈ [m],

P (h(x1) = s1 ∩ · · · ∩ h(xk) = sk) ≤ 1/mk.

A family H is called ϵ-approximately k-wise independent if

P (h(x1) = s1 ∩ · · · ∩ h(xk) = sk) ≤ (1 + ϵ)/mk.

Example. For example, if U = [3], the following family of functions is 2-wise independent but
not 3-wise:

h(1) = a, where a is randomly chosen from [m]

h(2) = b, where b is randomly chosen from [m]

h(3) = a+ b.

If we want to store n items into S bins, we have that Xi =
∑n

j=1 1{h(j) = i} and

E
(
Xk

i

)
= E


 n∑

j=1

1{h(j) = i}

k
 .

Then, if we have k-wise independence and since the above variable only depends on k variables at
each time, we can obtain concentration. Thus we can repeat the analysis as in the fully independent
case.

2

Pairwise independence ⇒ Universality. Below we show that Pairwise independence implies
Universality. This holds because

P (h(x) = h(y)) =
∑
s∈[m]

P (h(x) = s = h(y)) ≤
∑
s∈[m]

1 + ϵ

m2
=

1 + ϵ

m
.

3 Examples

The goal is to construct Universal or Pairwise independent hash families H, where H can be written
down and evaluated quickly. Some examples are presented below.

3.1 Example 1: Carter Wegman Hash Family.

Pick P > U and select a, b ∈ P uniformly. We have ha,b(x) = (ax+b) mod P mod m. This family

is m
P -approximately 2-wise independent. Generalizing this, the family ha1,...,ak(x) =

(∑k
j=0 aix

i
)

mod P mod m is m
P -approximately k-wise independent.

Note. To store the above family we need to store only aandb, that is 2u = 2 logU bits.

3.2 Example 2

Let the universe be U = 2u and let M = 2m. We define

ha(x) = (ax mod U) >> (u−m),

where >> denotes the right shift and a is a random odd number in [U]. This family is 2-
approximately universal (proof left as exercise).

Note. To store the above family we need to store only a, that is u = logU bits.

3.3 Example 3

Let A be a m × u bit matrix, x is a bit vector of length u, and b is a bit vector of length m. We
consider

hA,b(x) = Ax+ b.

Claim 4. The above family is universal.

Proof. For elements x ̸= y we have

P (hA,b(x) = hA,b(y)) = P (Ax+ b = Ay + b) = P (A(x− y) = 0) .

3

Now, we know that x−y ̸= 0. Therefore, there must exist some coordinate j such that (x−y)j = 1.
Regardless of columns 1, . . . , j − 1, j + 1, . . . , u of A,

P (A(x− y) = 0) = P (Aj = (A−Aj)(x− y)) = 1/2m = 1/M

where (A − Aj) denotes (abusing notation) matrix A with zeros in column j. The second to last
inequality is because Aj is random and the right hand side, (A − Aj)(x − y), is some fixed bit
vector.

Claim 5. The above family is pairwise independent.

Proof. We have that

P (hA,b(x) = α, hA,b(y) = β) = P (Ax+ b = α,Ay + b = β)

= P (Ax+ b = α,A(y − x) = (β − α))

= P (A(y − x) = (β − α)) · P (Ax+ b = α|A(y − x) = (β − α)) .

Now, we have P (A(y − x) = (β − α)) ≤ 1/2m = 1/M as previously. For the second term, A(y−x) =
(β−α) only depends on A. Therefore, regardless of the value of A, since b is also random, we have
again P (Ax+ b = α|A(y − x) = (β − α)) ≤ 1/2m = 1/M .

Note. In order to store the above functions we need to store A and b. Thus, we need O(mu) =
O(logM logU) ≤ O(log2 U) bits. In fact, it suffices to use a matrix A that is Toeplitz (i.e. each
row is a shift of the previous by 1 and the empty spots can be chosen randomly), which further
reduces the number of bits required.

4 Perfect Hashing

We want to hash a set S ⊆ [u] with |S| = n using a pairwise independent hash family H = {h :
[u] → [m]}. Pairwise independence implies that the expected number of collisions is

E (# collisions) =

(
n

2

)
P (h(x) = h(y)) ≤ n2

2m
.

By choosing m ≥ n2 the above becomes less that 1/2. Thus, we have zero collisions with probability
at least 1/2. This gives us O(1) lookup time, O(n2) space and O(1) words to store H. We recall
that Cuckoo Hashing has O(1) worst case lookup time, O(n) space and O(n) words in order to
store H.

Let Xi be the number of items in bin i, then we would like to compute the second moment

E

(∑
i

X2
i

)
. (1)

Since the expected number of collisions is E
(
Xi
2

)
and we have that X2

i = 2
(
Xi
2

)
+Xi, we can obtain

E

(∑
i

X2
i

)
= 2E

(∑
i

(
Xi

2

))
+ E

(∑
i

Xi

)
≤ 2

n2

m
+ n.

4

Which is O(n) for n = m. So, we can use the following idea to achieve Perfect Hashing: (i) Pick
h : U → [n] such that

∑
iX

2
i ≤ 10n. (ii) For each cell i of the hash table make a secondary hash

table with size
∑

iX
2
i ≤ 10n and hash function hi : U → [mi]. As we saw before, the probability

that there are no collisions in the secondary hash table is small (less than 1/2) if we choosemi ≥ X2
i .

5

