CS 395T: Sublinear Algorithms Fall 2014

Lecture 13 — Oct. 9, 2014
Prof. Eric Price Scribe: Udit Agarwal

In today’s lecture, we will cover the following topics:

1. l3/ly upper bounds [CRT06]

2. la/l3 lower bounds [CDDO09] :- To perform l/ly recovery deterministically, at least €2(n)
samples are required.

3. 11/l lower bounds [DIPW10] :- To perform [; /I recovery deterministically or with a random-
ized algorithm, at least Q(klog %) samples are required.

Consider the problem of stable sparse recovery: given a matrix A € R™*™ and a k-sparse vector x
and given y = Az + e, with e as the error term, we wish to recover & such that

|2 — ]2 < Clle]]2

Ques: What about if z is not k-sparse??

Then the problem becomes: given Az, Vx € R™, recover & such that

& —all, <C min [le —2/||,
k-sparse x

for some norm parameters p and ¢ and an approximation factor C.

Thus, the error term depends only on the top k terms of z. Some of the [,/l, recovery guarantees
are as follows:

® lg/lgi

|12 — zll2 < Cllz — zk|2
® lg/lli o

T—xlle < —|lx —x

| |2 < \/EII k|1
® ll/lli

|2 — 2|1 < Cl|lz — 2|1

where zj contains the top k terms of x.

Now, we’ll talk about the bounds on the number of samples required to perform each of these [,/
guarantees deterministically:

e [3/ls : To perform ly/ls recovery deterministically, at least €2(n) samples are required.



e l3/ly = To perform I3/ly recovery deterministically, at least O(klog %) samples are required.

e [1/ly : To perform I1/l; recovery deterministically, at least Q(klog %) samples are required
and can be done in O(nlogn) time.

1 I3/l Recovery Upper Bound

We are given a matrix A € R™*" that satisfies RIP and Y = Axg; + e, where ¢ is the error term.
Then, we have

12 — ][ < Clle]]2 (1)
Ques: What about if x is non-sparse??
We have, Ax = Azoy, + A(z — x91).
From (1), running with &’ = 2k, we get that

12 = arlla < Cl|A(z — za)] 2 (2)

Now, we’ll use a shelling argument, similar to one we described in the last class.

Split z into blocks M), 2@ ... of size k, so that z(!) has the largest k£ coordinates, and each next
2 has the next largest k coordinates. Then, we have

T — Top = 2z + z® + ...

Then,

Az = za)ll2 = |4 Y2l
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Now, plugging this inequality in equation (2), we have

(1+¢€)
Vk

|12 —axlla < C

|z — 2kl 3)

Now, we have
12 = zll2 < (|2 — zarll2 + |l — zaxll2 (4)

Also, by plugging A = I in the previous argument, we have
e = aalle < =z — (5)
T —T2l|2 = —=||T — Tk|[1
VEk

Now using equations (4) & (5) in equation (3), we have

LD s e — el

|2 — zg|l2 < (C

S

2 [/l Recovery Algorithm

We have seen in Problem 2 of Problem Set 2 that (k, C/v'k) lo/l; recovery implies (k,O(C)) 11/l
recovery. Hence, [1 /l; recovery guarantee is taken care of by the results in the previous section.

3 Iy/l, Recovery: Deterministic Lower Bound

We will show that deterministic l3/ls recovery requires £2(n) samples even for k = 1. So let’s think
about the k =1 case.

Now, suppose we are given y = Az for some A € R™*" and z € R", and can recover & such that

|2 — 2|z < Cmin [lz — x|
1€[n]

where z; contains the top i terms of x.

If y = 0, then  must also be zero vector.

Thus, Vz € N := nullspace(A), we need 0 to be an OK output.
Then Vj € [n] and z € N,

fo < C2Zx?
i i#j

z; < (C% = 1).(l[all3 - 27)

1
7f < (1- @)-valli (6)
5,1_/
a <



Our goal is to show that (6) implies that the dimension of A" must be small.

Let v1,...,Un—m be the orthogonal basis for N. Thus, (n — m) is the dimension of the null space

N.
Let e; € R™ such that it’s i-th entry is 1 and the rest of the entries are 0.
n—m

Then, Proju(e;) (the orthogonal projection of ¢; onto N) = > 07/ vjv]Tei

Since Projy(e;) € N, using (6) we have for the ith coordinate that

(Projax(ei))i = Z e; v e; < /.|| Proja(e)]|3 (7)
7=1
n—m
(v, €0) ] < Ve (8)
j=1
Now, sum equation (8) over i € {1,...,n} and find
n—m= Z lvs13
7j=1
n—m n
=2 > _I(we
7j=1 =1

using (6). Hence, m > 5.

This was proved by Albert Cohen, Wolfgang Dahmen, and Ronald DeVore [CDD09] .

4 Deterministic [1/l; lower bound [DIPW10]

Idea: We need to find a large set of well-separated sparse points and we should be able to cover
them even in presence of lot of noise.

We’ll use a Volume Argument to find such a set of points.

4.1 Gilbert-Varshamov Bound

They showed that Vg, k € ZT, e c RT with0 < e < 1— %, Jaset S C [¢]* such that S has minimum
Hamming Distance ek and
log [S] > (1 — Hg(e))klog g

where H, is the g-ary entropy function

Hy(e) = —€elog,(—

) (1 9log,(1- 9
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If we set ¢ = 7 and € = %, then S C [%]k and has minimum hamming distance equal to % and

log [S] 2 klog %.

We can transform the set [¢]¥ to {0,1}* by taking each character and writing it into a unit. For
example,

5 (0,0,0,0,1,0,...,0)
6 — (0,0,0,0,0,1,0,...,0)

This gives us a set S C {0, 1}" consisting of only k-sparse vectors with minimum [;-distance k& and
log|S| 2 klog %.

k

Now, suppose z € S, [|w||1 < {5, and we recover & from y = Az + w).

We know that

&~ (@+wlh <2 min_||z+w) -

k-sparse z’

<2. 10 (can be achieved by plugging ' = )
_k
5

Now, we have

12 = zl[y < llwlly +|1& = (z +w)[lx

We have bunch of points x € S and S C Bj.k, where B is the [; ball in R™.

Now, Vz; € S, consider a ball (x; + %Bl). For any given real matrix A € R™*", we can project
the ball (x; + l—koBl) to A(z; + %Bl) and these balls are disjoint for different z; € S. And as
Ugies(@i + 45B1) C 1:kBy, all these projected balls lies inside A(15kBy).

Now, the volume of each of the projected small balls is equal to Vol(A(%Bl)) and that of the
bigger ball inside which each of the disjoint smaller balls lie is equal to Vol(A(16kB1)). And, we
have

Vol(A(kBy))
Vol(A(&By))

—1m 9)

Note: AB; is some convex shape in R™.



As the smaller balls are disjoint and they lie inside the bigger ball, we have

k

A(—
SIVol(A(q;

BY)) < Vol(A(;kBy)

|S] <11 (from equation (9))
m > logy |5

mzklog%

5 Randomized Lower Bound [DIPW10]

We'll show that any matrix A € R™*™ which is used for randomized [y /l; recovery must have at
least m = Q(klog %) rows. We'll first assume that each of the entries A;; is an integer with O(logn)
bits.

Thus, the vector Az requires O(mlogn) bits. Thus, in total Q(klog 7 logn) bits must be stored
for Az where each x; is poly-precision (logn bits per entry).

Let S be a set of k-sparse binary vectors and has minimum hamming distance k and log |S| 2, klog %.

Now, consider x1,29,...,2r € S.
Let

1 1 1

Z:$1+ﬁ$2+m$3+"'+ﬁﬂffg
=w’(let)
We have,
/] < h( g ) = o
- 7M1 112 10

Rounding the recovery z of y = Az to S gives z7.

Note:  We can relate this problem to a Communication Complexity problem. Consider the
following communication game. There are two parties, Alice and Bob. Alice is given the R vectors
r1,%2,x3,...,2TR from set S. Now, Alice sends the vector Az as a message to Bob, who must recover
the vectors x1, 2,23, ..., 2g from Az, which implies that Az has indeed Q(Rlog.S) = Q(Rklog %)
bits.

Let
y? = (y — Az)).11

1
= A.(wg + —x3+

Now, rounding ) to S gives us zs.

We can adopt the same strategy to recover all other z;’s for all 1 <i < R.



If this algorithm works with probability > 1 — i, then probably all stages succeed and we can
recover all the x;, which is Q(Rklog 72) bits.

If A has logn bits per coordinate, then Az has (R + logn) bits per coordinate.

If R > logn, then this means we have communicated Q(Rklog %) bits of information using only
O(mlogn) bits of transmission. Hence

mlogn 2 klog%logn

mzklog%

5.1 Removing the assumptions

The above proof had two flaws: it assumed that the entries of A were integers with O(logn) bits
per entry, and it required the algorithm to succeed with probability 1 — ﬁ probability. Neither
of these is necessary to the proof.

To decrease the probability requirement, consider the following communication game. There are
two parties, Alice and Bob. Alice is given a string z € {0,1}". Bob is given an index i € [n],
together with z1,29,...,2;_1. Now Alice sends some message to Bob, who must output z; with
probability at least %. We refer to this problem as Augmented Indexing. It is known that solving
Augmented Indexing requires lots of communication:

Theorem 5.1 ([BJKS02]). Any protocol that solved Augmented Indexing requires 2(n) bits of
communicalion.

In our current setting, Alice has a bit string of length Rlog.S, which she converts into vectors
Z1,%2,...,2xr € S. Bob converts his inputs into an index ¢ € [R] and vectors x1,x9,...,2;—1, and
wants to learn z;. Now Alice sends the vector Az to Bob, who must recover the vector x;.

Lemma 5.2. [DIPW10] Consider any m X n matriz A with orthonormal rows. Let A" be the result
of rounding A to clogn bits per entry. Then for any x € R™ with A’z = A(z + €) and ||e||; < n*~¢
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