CS 395T: Sublinear Algorithms Fall 2014

Lecture 14 — Oct 14, 2014
Prof. Eric Price Scribe: Xiangru Huang

1 Overview

In the last lecture : lower bounds

In this lecture: problems for final project, RIP-1, expanders, SMP, SSMP

2 Problems for final project

e Adaptivity in Sparse Recovery
So far, we can choose matrix A independent of x and estimate 2 from Az using O(klog¥)
space. What if we choose < vi,xz >, < vg9,z >, .-+, < Up,x > where v; depend on
V1, V2, -, V17

e k-sparse
Given A ~ N(0, Insxn), we know that if m = O(klog}) (hence RIP), then L1 minimization
and THT works.
But for m << klog, doing 1 /{1 recovery is impossible. What if z is exactly k-sparse?

e Compressed Sensing with priors
e.g. If x follows some distribution, what could happen? This is a general question.

e Count-sketch
Using top 2k coordinates, we can do (14 €) ¢2/¢5 approximate recovery where m = O(%logn)
If we use top k coordinates, then m = O(e%logn).
Better analysis used in [MP14] might give O(Gﬁ2 + %logn).

e LASSO vs sqrt LASSO
LASSO finds argmin|y — Az||2 + A||z||1. And sqrt LASSO finds argmin|ly — Az|2 + ||z

T X
Compare these two algorithms. Which one is better under certain situations?
¢ Random order streams

Given x1, x2, -+, Ty ~ D over F3'. e.g. x = Ay (mod 2) where A is a n by § matrix. One
of the two cases is true:

— D is g-dimension subspace

— D is uniform

How many samples to distinguish these two cases?



3 Sparse Matrix with RIP-1

Consider 0-1 matrix A € R™*" with d = O(logn) ones per column. For A, we can achieve fast
multiplication and O(logn) update time. The problem is A can’t satisfy RIP unless m = O(k?).
But A can satisfy the following RIP-1 property [BGIKSO08].

Definition 1. A has RIP-1 of (k,e€) if Vk-sparse x, | Az|1 = (1 £ €)||z|;.
Definition 2. G = (U,V, E) is a bipartite graph with left-degree d. n = |U|, m = |V|. N(S)
denotes the neighbors of S. G is a unbalanced bipartite expander of (k,e€) if
VS US| <k= N(S)>(1-e€)dS|
Claim 3. random graph with d = %log%,m = 6%klog% is expander w.h.p.

1
logk)lJrE’m _ k1+ad2

Claim 4. There exist explicit expander constructions for Va > 0,d = O(logn=%

The adjacency matrices of expander graphs, scaled by a factor of é, satisfy RIP-1.
Theorem 5. (k,¢) expander = (k,2¢) RIP-1

Proof. VS of size k, d = %log%, m = %k:d. Consider all kd edges, define Vi, Va, -+ Vig € [m]i.i.d.
Let C; denotes the event that Vj collide with Vi, Va,---,V;_1. We have

7—1 kd €
Pric]<i—< <=
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By union bound, the probability that N(S) > (1 — €)d|S| holds for all S C U,[S| =k is at least
1 — 9~ SUklog ) ()=1- 2~ %klog k) - Then sum over all sizes we can show Y7 271%9% << 1, which
means the theorem is true w.h.p. O

4 From RIP-1 to sparse recovery

There is a viable natual algorithm from count-sketch. You can check out the explanation in the
book [FSR].

Algorithm: Natural Alg
20 =0
Forr=0,1,---,T{

i+ medi — Az(™);
u rrj;gNz(%n(y z\");

2D — Hy(z(r) + u)

output z(T)




Here we introduce SMP [BIR08] and SSMP [BI09]. The following algorithm is SMP.

Algorithm: SMP
20 =0
Repeat T' times

w; < median(y — Az(M);
JEN(3) (v )i
2(r+1) Hy(x(r) + Hox(u))

output z(T)

SSMP is similar to SMP except the updates is done sequentially.

Algorithm: SSMP
1) Let 2 =0
2) Forr =1,2,---, T = O(log(||z]|1/le[l1))

a) Fort =1,2,--- 10k
i medi — Az();
° u; n}gNzg)n(y z\");
e Let i be the largest term of u

o Let 2(" = z(" + U; €4

b) Let 2(") = Hy(z("))

3) Report 2’ = z(7)

Here we prove SSMP. A more detailed proof can be found at [BI09]

Proof. y = Ax = (3 ,cq aixi) +e
If Y [laizil|s < (14 €)|| X asxil|1, * we can show 3ay, i, s.t.

1
ly — aizil[y < (1 - 107)”9”1

Therefore each step z(") = z(") 4+ wze; decreases ||y — Az()|| by 1 — %, after O(k) steps, we have

1
A < —|ly — Az(TD
ly xl!_mHy "

1
=z — 2| < S|z = 21 + O(llellr)

=TIt takes O(log(||z||1/|lel|1) iterations to get error to O(]|el1)

Lyou will prove this in your homework
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