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Lecture 14 — Oct 14, 2014

Prof. Eric Price Scribe: Xiangru Huang

1 Overview

In the last lecture : lower bounds

In this lecture: problems for final project, RIP-1, expanders, SMP, SSMP

2 Problems for final project

• Adaptivity in Sparse Recovery
So far, we can choose matrix A independent of x and estimate x from Ax using O(klog nk )
space. What if we choose < v1, x >, < v2, x >, · · · , < vm, x > where vi depend on
v1, v2, · · · , vi−1?

• k-sparse
Given A ∼ N (0, IM×N ), we know that if m = O(klog nk ) (hence RIP), then L1 minimization
and IHT works.
But for m << klog nk , doing `1/`1 recovery is impossible. What if x is exactly k-sparse?

• Compressed Sensing with priors
e.g. If x follows some distribution, what could happen? This is a general question.

• Count-sketch
Using top 2k coordinates, we can do (1 + ε) `2/`2 approximate recovery where m = O(kε logn)

If we use top k coordinates, then m = O( k
ε2
logn).

Better analysis used in [MP14] might give O( k
ε2

+ k
ε logn).

• LASSO vs sqrt LASSO
LASSO finds argmin

x
‖y −Ax‖22 + λ‖x‖1. And sqrt LASSO finds argmin

x
‖y −Ax‖2 + λ‖x‖1.

Compare these two algorithms. Which one is better under certain situations?

• Random order streams
Given x1, x2, · · · , xm ∼ D over Fn2 . e.g. x = Ay (mod 2) where A is a n by n

2 matrix. One
of the two cases is true:

– D is n
2 -dimension subspace

– D is uniform

How many samples to distinguish these two cases?
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3 Sparse Matrix with RIP-1

Consider 0-1 matrix A ∈ Rm×n with d = O(logn) ones per column. For A, we can achieve fast
multiplication and O(logn) update time. The problem is A can’t satisfy RIP unless m = O(k2).
But A can satisfy the following RIP-1 property [BGIKS08].

Definition 1. A has RIP-1 of (k, ε) if ∀k-sparse x, ‖Ax‖1 = (1± ε)‖x‖1.

Definition 2. G = (U, V,E) is a bipartite graph with left-degree d. n = |U |, m = |V |. N(S)
denotes the neighbors of S. G is a unbalanced bipartite expander of (k, ε) if

∀S ⊂ U, |S| ≤ k ⇒ N(S) ≥ (1− ε)d|S|

Claim 3. random graph with d = 1
ε log

n
k ,m = 1

ε2
klog nk is expander w.h.p.

Claim 4. There exist explicit expander constructions for ∀α > 0, d = O(logn logkε )1+ 1
α ,m = k1+αd2

The adjacency matrices of expander graphs, scaled by a factor of 1
d , satisfy RIP-1.

Theorem 5. (k, ε) expander ⇒ (k, 2ε) RIP-1

Proof. ∀S of size k, d = 1
ε log

n
k , m = 2

εkd. Consider all kd edges, define V1, V2, · · · , Vkd ∈ [m]i.i.d.
Let Cj denotes the event that Vj collide with V1, V2, · · · , Vj−1. We have

Pr[Cj ] ≤
j − 1

m
≤ kd

m
≤ ε

2

Pr[

kd∑
i=1

Ci > εkd] ≤ 2−
εkd
2 = 2−Ω( εkd

2
)

By union bound, the probability that N(S) ≥ (1 − ε)d|S| holds for all S ⊂ U, |S| = k is at least
1− 2−Ω(klog n

k
)
(
n
k

)
= 1− 2−Ω(klog n

k
). Then sum over all sizes we can show

∑n
i=0 2−ilog

n
k << 1, which

means the theorem is true w.h.p.

4 From RIP-1 to sparse recovery

There is a viable natual algorithm from count-sketch. You can check out the explanation in the
book [FSR].

Algorithm: Natural Alg
x(0) = 0
For r = 0, 1, · · · , T{
ui ← median

j∈N(i)
(y −Ax(r))j

x(r+1) ← Hk(x(r) + u)
}
output x(T )
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Here we introduce SMP [BIR08] and SSMP [BI09]. The following algorithm is SMP.

Algorithm: SMP
x(0) = 0
Repeat T times

ui ← median
j∈N(i)

(y −Ax(r))j

x(r+1) ← Hk(x(r) +H2k(u))

output x(T )

SSMP is similar to SMP except the updates is done sequentially.

Algorithm: SSMP
1) Let x(0) = 0
2) For r = 1, 2, · · · , T = O(log(‖x‖1/‖e‖1))

a) For t = 1, 2, · · · , 10k

• ui ← median
j∈N(i)

(y −Ax(r))j

• Let i be the largest term of u

• Let x(r) = x(r) + uiei

b) Let x(r) = Hk(x
(r))

3) Report x′ = x(T )

Here we prove SSMP. A more detailed proof can be found at [BI09]

Proof. y = Ax = (
∑

i∈S aixi) + e
If
∑
‖aixi‖1 ≤ (1 + ε)‖

∑
aixi‖1, 1 we can show ∃ai, i, s.t.

‖y − aixi‖1 ≤ (1− 1

10k
)‖y‖1

Therefore each step x(r) = x(r) + uiei decreases ‖y −Ax(r)‖ by 1− Ω(1)
k , after O(k) steps, we have

‖y −Axr‖ ≤ 1

10
‖y −Ax(r−1)‖

⇒‖x(r) − x‖1 ≤
1

5
‖x(r) − x‖1 +O(‖e‖1)

⇒It takes O(log(‖x‖1/‖e‖1) iterations to get error to O(‖e‖1)

1you will prove this in your homework
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