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1 Overview

In this lecture we will talk about adaptive sparse recovery.

2 Adaptivity in group testing

In sparse recovery, we have

y = Ax =


〈v1, x〉
〈v2, x〉

...
〈vm, x〉

 .

In our previous non-adaptive setting, vi’s were chosen independently. Intuitively, it seems we may
be able to do better if they are not independent. So, in the adaptive setting we talk about today,
vi is chosen dependent on 〈v1, x〉 , 〈v2, x〉 , . . . , 〈vi−1, x〉. The idea is, for some architecture like the
single-pixel camera, linear measurements are being taken sequentially. So, you can choose what
measurement to take based on what you have found previously.

2.1 Non-adaptive group testing

Consider the example of blood testing, where you have n people and some small fraction of them
are carrying disease. You want to know which of them has the disease. This problem was first
studied in World War II to test syphilis in the army. Group testing is also used by the Orthodox
Jewish community for pre-dating genetic testing.

The trivial solution is to test every single person. Alternatively, to make it faster, we can mix
together blood samples. For example, you can mix together the blood samples of 10 people, and
test whether any of these 10 people got the disease. If the chance of the disease is 1/1000, you can
make your poll size ≈ 1000. Then the chance of this pool has a positive or negative is ≈ 1/2. So,
you can get ≈ 1 bit of information per test (either yes or no). And if you do ≈ k log n such trial,
using a union bound, with high probability, you can find out which person has the disease.

Let x ∈ {0, 1}n be the indicator vector of the set with disease. Let v ∈ {0, 1}n be the indicator
vector of the set that you mix together. Then, each test observes whether 〈v, x〉 6= 0. If x is
k-sparse, we can choose m = O(k log n) random v’s, where each v has n/k ones and each person
is in d = O(log n) tests. We can thinking of the design of the group testing as a bipartite graph
similiar to Figure 1.
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Figure 1: Bipartite graph corresponding to the design of group testing. The n left vertices corre-
spond to the n people and the m right vertices correspond to the m tests.

For each person, suppose their tests are t1, . . . , td. If that person has disease, then all tests ti are
positive. Otherwise,

P[test ti is positive] =P[some sample xj in test ti is non-zero]

=1− P[all samples xj in test ti is zero]

≈1− (1− k/n)n/k ≈ 1− 1/e.

So,
P[all tests ti ≈ (1− 1/e)d ≤ 1/n10

for some d = O(log n).

Therefore, non-adaptive random test uses O(k log n) measurements, and for all such x, with high
probability it returns the correct answer.

2.2 Adaptive group testing

In most cases, you can actually tell whether you are certain about the result. Consider the example
in Figure 2. We know for certain that people 2, 4 and 6 do not carry disease, but people 1 and 6
do. The result for person 3 is ambiguous. In general, we can first cross out all people who are in
at least one negative test. For the remainng people, if they are the only remaining participant of
some positive test, then we are certain that they carry disease. Otherwise, they are ambiguous.

We have shown that for all such x, the number of ambiguity is 0 with probability 1−n−Ω(1). In fact,
we can show that for all such x, the number of ambiguity is less than t with probability 1−n−Ω(t).
Take t = O(k) and apply union bound over

(
n
k

)
possible values of x. We can show that with high

probability, for all such x, the number of ambiguity is less than O(k). This uniform guarantee is
analogous to the result that a Gaussian matrix with high probability satisfies RIP, but it does not
give us an explicit construction.

So, after one round, with high probability, for all such x, there are only O(k) ambiguity. This
means that in two rounds, it can eliminate all ambiguity uniformly with O(k log n) tests. However,
with one round, uniformity requires Ω(k2 logk n) tests, and O(k2 log n) tests suffice. Therefore,
adaptivity helps group testing.
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Figure 2: Example of ambiguous group testing result. The left vertices correspond to 6 people and
the right vertices correspond to 6 tests labeled by the test results.

3 Adaptivity in sparse recovery

In group testing, we get at most 1 bit of information per measurement, so we need O(k log n
k )

measurements to distinguish all
(
n
k

)
possible inputs. The difference of sparse recovery and group

testing is that we do not just learn whether 〈v, x〉 = 0 or not, but also the value of 〈v, x〉. In the
case of real measurement, we can in principle get a lot of information per measurement. However,
if we need to tolerate noise, we can show that we can only get O(1) effective bit of information per
measurement. So, the question is whether adaptivity can help in sparse recovery.

The result is that adaptivity provides no improvement in the uniform setting. In particular, for
`2/`2 sparse recovery, Ω(kε log n

k ) measurements are necessary [FR13].

In contrast, adaptivity can help in the non-uniform setting. It has been shown that adaptive `2/`2
sparse recovery in the non-uniform setting is possible with O(kε +k log log n

k ) measurements [IPW11]

and Ω(kε + log log n) measurements are required [ACD13, PW13].

3.1 Lower bound of non-adaptive sparse recovery

Consider k = 1 and ε = 1. We will prove a lower bound of m = Ω(log n) measurements for
non-adaptive sparse recovery in the non-uniform setting.

Suppose A ∼ PA such that for all x, it works with high probability. Let Px be a distribution of x.
Then,

∀x P
A∼PA

[correct] > 1− n−10

=⇒ P
x∼Px,A∼PA

[correct] > 1− n−10

=⇒ ∃A P
x∼Px

[correct] > 1− n−10.

This is known as Yao’s minimax principle. Using this, it suffices to exhibit some distribution Px
such that for all fixed deterministic A, if the Px∼Px [correct] > 1− n−10, then m ≥ Ω(log n).

Consider x = ej + w, where ej has a one in a random position j and w is drawn according to
N (0, I/100n). Since ‖w‖2 ≈ 0.1, `2/`2 recovery gets x to ±0.2. So, rounding x recovers the value
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of j, which contains log n bits of information. Therefore, the communication

j → x→ Ax→ x̂→ ĵ = j

must cost Ω(log n) bits. If we can show that each measurement 〈v, x〉 contains information I(〈v, ej〉 ; 〈v, x〉) .
1, then by Lemma 1 which we will argue, we can show that log n = I(j;Ax) ≤ I(Aej ;Ax) . m.

Observe that each measurement is 〈v, x〉 = 〈v, ej〉 + ‖v‖2
10
√
n
N (0, I). By Shannon-Hartley Theorem,

I(〈v, ej〉 , 〈v, x〉) ≤ 0.5 log(1 + SNR), where the signal-to-noise ratio in this case equals

SNR =
E[signal2]

E[noise2]
=

∑
j 〈v, ej〉2 /n
‖v‖22/100n

=
‖v‖22/n
‖v‖22/100n

= 100.

So, I(〈v, ej〉 , 〈v, x〉) . 1. Notice that non-adaptivity is required for E[signal2] above.

3.2 Entropy and mutual information

For a discrete random variable x ∼ p, the entropy of x defined as

H(x) =
∑
i

pi log
1

pi
.

is the expected/asymptotic description length. If x is continuous, we write h(p) and the summation
becomes integration.

For example, if

x =

{
0 with probability 999/1000

1 with probability 1/1000
,

then

H(x) =
999

1000
log

1000

999
+

1

1000
log 1000 ≈ 999

1000
0.001 +

1

1000
log 1000 ≈ log 1000

1000
.

The mutual information between a and b is defined as

I(a; b) = H(a)−H(a, b).

3.3 Subadditivity of mutual information

In general, mutual information is not subadditive. For example, consider x and b drawn indepen-
dently and uniformly from {0, 1}. Let y1 = x ⊕ b and y2 = b. Then, I(x; y1) = I(x; y2) = 0 but
I(x; (y1, y2)) = 1.

We can assume matrix A has orthonormal rows. (If A = UΣV T is the SVD factorization of A,
then Σ−1UTA has orthonormal rows and this is an invertible transformation.)

Lemma 1. I(Aej ;Ax) ≤∑i I(〈vi, ej〉 ; 〈vi, x〉).

Proof. Consider Ax = Aej +Aw. Since w ∼ N (0, I/100n) and A has orthonormal rows, entries in
Aw are independent Aei and each other. So, it suffices to prove the following lemma.
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Lemma 2. If y = y + w ∈ Rn such that wi’s are independent of y and each other, then I(y; y) ≤∑
i I(ȳi; yi).

Proof.

I(y; y) =h(y)− h(y|y)

=h(y)− h(w)

=
∑
i

h(yi|y1, . . . , yi−1)−
∑
i

h(wi|w1, . . . , wi−1)

=
∑
i

h(yi|y1, . . . , yi−1)−
∑
i

h(wi)

≤
∑
i

h(yi)−
∑
i

h(wi)

=
∑
i

h(yi)−
∑
i

h(yi|yi)

=
∑
i

I(yi; yi)
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