
CS 395T: Sublinear Algorithms Fall 2014

Lecture 22 — Nov 11, 2014

Prof. Eric Price Scribe: Taewan Kim

1 Overview

In the last few lectures we covered

1. Fourier Transform

2. Sparse Fourier Transform

3. Fourier RIP

In this lecture, a new topic ’Oblivious Subspace Embeddings’ is covered, especially algorithms
introduced by Clarkson and Woodruff [CW13] for regression and low rank approximation problems.

2 Application

Oblivious Subspace Embedding (OSE) is a tool for faster numerical linear algebra. There are two
possible applications where OSE can be applied: regression and low rank approximation.

2.1 Regression

Problem Statement Given A ∈ Rn×d and b ∈ Rn, Find x ∈ Rd minimizing ‖Ax− b‖2. (n� d)

A is given data composed of n rows of size d which indicates the d different features. And for those
n items, vector b is composed of n outcomes corresponding to each 1× d feature vector. By finding
solution x ∈ minimizing ‖Ax− b‖2, we can find an approximate linear mapping between A and b
via x: Ax ≈ b.

This problem can be relaxed by allowing ε error:

Find x′ s.t. ‖Ax′ − b‖2 ≤ (1 + ε) min
x
‖Ax− b‖2

An algorithm to find optimal solution of the regression problem (ε = 0) is using Moore-Penrose
pseudoinverse 1.

Algorithm

1. x = A+b, (A+ is pseudoinverse of A)

1Details of Moore-Penrose pseudoinverse can be found in Wikipedia or Chapter 4 of Laub, Alan J. Matrix analysis
for scientists and engineers. Siam, 2005.
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2. When rank(A) = d and d� n, A+ = (ATA)−1AT

Time complexity of this algorithm to calculate x = A+b is O(d2n + d3) = O(d2n) when d � n.
To speed up, sparsity of A can be utilized when A is sparse. If nnz(A) represents the number
of nonzero elements in A, time complexity can be improved to O(d · nnz(A) + d3). The actual
computation should be done as follows: compute ATx first, which gives O(nnz(A)), then compute
(ATA)−1 which gives O(d3), and finally compute (ATA)−1(ATx).

However, by using OSE of [CW13] one can achieve:

• O(nnz(A)) + Õ(d3/ε2)

• O(nnz(A) log(1/ε)) + Õ(d3 log(1/ε))
(Here, Õ(f) , f · logO(1)(f))

2.2 Low Rank Approximation

Problem Statement Given a matrix A ∈ Rn×n, find a matrix B with rank(B) = k which
minimizes ‖A−B‖2F .

This low rank approximation problem with Frobenius norm can also be relaxed by allowing ε error:

Find B′ s.t. ‖A−B′‖2F ≤ (1 + ε) min
B

rank(B)=k

‖A−B‖2F

When ε = 0, Singular Value Decomposition (SVD) gives the best rank-k approximation of A
by selecting top k singular values and corresponding singular vectors. SVD requires O(n3) of
computational time.

However by using Power method/subspace iteration:

• Each iteration takes O(n2k) time.

• For Frobenius norm approximation, bound is not known.

• By allowing spectral error, Õ(n2k/ε2) is possible per iteration.

Also, utilizing OSE can give better time bound:

• O(nnz(A)) + Õ(nk2/ε4 + k3/ε5)

For a dense matrix A, rank-k matrix approximation using random projection was introduced by
[Sarlos06, CW09].

3 Oblivious Subspace Embedding

Definition 1. Defined on parameters (m,n, d, ε, δ). An Oblivious Subspace Embedding (OSE) is a
distribution on matrices S ∈ Rm×n, s.t. ∀ d-dimensional subspace U of Rn, with probability 1 − δ
over S, we have ∀x ∈ U that ‖Sx‖2 = (1± ε)‖x‖2

2



3.1 Regression with OSE

Now, we can solve the problem in easier way with lower dimension using OSE. Rather than solving
x∗ = arg minx ‖Ax− b‖, solve:

x′ = arg min
x
‖SAx− Sb‖

= arg min
x
‖S(Ax− b)‖

where (Ax− b) ∈ Col(A ◦ b).
(Col(A ◦ b) means a column space of A adjoined with the vector b)

Then from the definition of OSE,

‖Ax′ − b‖
‖Ax∗ − b‖

≤
(

1 + ε

1− ε

)
‖S(Ax′ − b)‖
‖S(Ax∗ − b)‖

≤
(

1 + ε

1− ε

)
. 1 + 3ε (1)

Computational time is determined by ”Embedding time+ Solve(m, d)”, where Solve(m, d) repre-
sents the time to solve new regression problem with size m× d of SA and m× 1 vector Sb.

One example of OSE is Gaussian random matrix which can be defined as:

Si,j = N (0, 1/m) (2)

With Gaussian OSE, m = O(d/ε2). Therefore, embedding requires O(mnd) = O(d2n/ε2) and
Solve(d,m) requires O(d3/ε2) computational time. So, total time is O(d2n/ε2 + d3/ε2).

3.2 Fast Johnson-Lindenstrauss

Now, we introduce an important lemma, which is called Johnson-Lindenstrauss (JL) lemma.

Definition 2 (Johnson-Lindenstrauss Lemma). If m = O((1/ε2) log(1/δ)), then

∀x, ‖Ax‖22 = (1± ε)‖x‖22 w.p. 1− δ

Think as this way: given d-dim. subspace U , take ε-net: C = (1 + 1/ε)d points. If m =
O((1/ε2) log(1/δ)), then all are preserved, i.e. C can be covered.

x = x1+εx2 + ε2x3 + · · · for x1, · · · ∈ C
⇒ ‖Ax‖2 ≥ ‖Ax1‖ − ε‖Ax2‖ − ε2‖Ax3‖ − · · ·

≥ 1− ε− (1 + ε)(ε+ ε2 + · · · )
≥ 1− 3ε

Faster version of Johnson-Lindenstrauss embedding technique was introduced by [KW11]:

If A has RIP of order k, then AD has (ε, 2−k) JL property, where

D =


±1

±1
. . .

±1


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.

Last class, it is shown that FΩ∈[n] satisfies (k, ε) RIP if |Ω| ≥ (1/ε2)k log4 n. So, if m = |Ω| is

greater than (d/ε2) log(1/ε) log4 n, then subspace embeddings with m = (d/ε2) log5 n, and compu-
tational time is n log n. So, with Fast JL, embedding requires O(dn log n) and Solve(m, d) requires
O((d3/ε2) log5 n).

3.3 [CW13]

To improve the complexity, [CW13] used the sparsity of A. In each column of S, exactly one
element has ±1 value defined with hash functions:

h : [n]→ [m] ← 2-independent

σ : [n]→ {±1} ← 4-independent

therefore OSE matrix S is defined as,
Sh(i),i = σi

Let’s prove that above S is OSE by showing:

a, b ∈ Rn ⇒ 〈Sa, Sb〉 ≈ 〈a, b〉

Proof. Denote δr,i = Ih(i)=r (indicator function).

〈Sa, Sb〉 =

m∑
r=1

( n∑
i=1

δr,iσr,iai

) n∑
j=1

δr,jσr,jbi


=

[
n∑

i=1

aibi

(
m∑
r=1

δ2
r,iσ

2
r,i

)]
+

m∑
r=1

∑
i 6=j

δr,iδr,jσr,iσr,jaibj

= 〈a, b〉+

m∑
r=1

∑
i 6=j

δr,iδr,jσr,iσr,jaibj

⇒ E[〈Sa, Sb〉] = 〈a, b〉

Now let’s consider the variance, V ar[〈Sa, Sb〉]. (This proof can be referred to [NN13])

(V ar[〈Sa, Sb〉])2 =

m∑
r=1

∑
i 6=j

E
[
σ2
r,iδ

2
r,j(a

2
i b

2
j + aibjajbi)

]
 ∵ Consider (r, i), (r, j), (r′, i′), (r′, j′)

r = r′ or {i, j} = {i′, j′} → E[ · ] 6= 0
Otherwise → E[ · ] = 0 by independence.


⇒ V ar[〈Sa, Sb〉] =

1

m

∑
i 6=j

(
a2
i b

2
j + aibjajbi

)
≤ 2

m

∑
i 6=j

a2
i b

2
j

≤ 2

m

∑
i,j

a2
i b

2
j =

2

m
‖a‖22‖b‖22
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Let U ∈ Rn×d have orthonormal columns. We want,

‖SUx‖2 = (1± ε)‖x‖2 ∀x ∈ Rd

⇔ xTUTSTSUx = (1± ε)xTx
⇔ ‖UTSTSU − I‖2 ≤ ε
⇐ ‖UTSTSU − I‖2F ≤ ε2

So it is sufficient to show for Frobenius norm case.

(UTSTSU)i,j = 〈SUi, SUj〉 (Ui : ith column of U)

Ii,j = 〈Ui, Uj〉

Also,

∀i, j E[(UTSTSU − I)2
i,j ] ≤

2

m

⇒ E[‖UTSTSU − I‖2F ] ≤ 2d2

m
≤ 2ε2

⇒ ‖UTSTSU − I‖2 ≤ ε

which shows that ‖SUx‖2 = (1± ε)‖x‖2 ∀x ∈ Rd, i.e. S is OSE.

With this setting of S by [CW13], complexity can be achieved to O(nnz(A) + (d3/ε2) log5(d/ε)),
which is O(nnz(A)) + Õ(d3/ε2).

Following Table compares the computational time for introduced algorithms when applied to re-
gression problem. (O notation is omitted.)

No OSE: d · nnz(A) + d3 / d2n+ d3

with OSE: Embedding + Solve(d,m)

Gaussian: mnd = d2n/ε + d3/ε2

Fast JL: dn log n + (d3/ε2) log5 n

C-W: nnz(A) + Solve(d, d2/ε2)
= d4/ε2 ← bad!
→ (d3/ε2) log5(d/ε)

Table 1: Comparing complexities for various algorithms for regression
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