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1 Overview

In the last few lectures we covered

1. Fourier Transform
2. Sparse Fourier Transform

3. Fourier RIP

In this lecture, a new topic ’Oblivious Subspace Embeddings’ is covered, especially algorithms
introduced by Clarkson and Woodruff [CW13] for regression and low rank approximation problems.

2 Application

Oblivious Subspace Embedding (OSE) is a tool for faster numerical linear algebra. There are two
possible applications where OSE can be applied: regression and low rank approximation.

2.1 Regression

Problem Statement Given A € R"*% and b € R", Find x € R? minimizing || Az — b|l2. (n > d)

A is given data composed of n rows of size d which indicates the d different features. And for those
n items, vector b is composed of n outcomes corresponding to each 1 x d feature vector. By finding
solution € minimizing || Az — bl|2, we can find an approximate linear mapping between A and b
via x: Az = b.

This problem can be relaxed by allowing € error:

Find 2’ s.t. ||[Az" —b|]2 < (1 + €) min || Az — b]|2

An algorithm to find optimal solution of the regression problem (¢ = 0) is using Moore-Penrose

pseudoinverse .

Algorithm

1. # = A'h, (AT is pseudoinverse of A)

Details of Moore-Penrose pseudoinverse can be found in Wikipedia or Chapter 4 of Laub, Alan J. Matriz analysis
for scientists and engineers. Siam, 2005.



2. When rank(A) =d and d < n, AT = (ATA)~tAT

Time complexity of this algorithm to calculate x = A*b is O(d*n + d3) = O(d?n) when d < n.
To speed up, sparsity of A can be utilized when A is sparse. If nnz(A) represents the number
of nonzero elements in A, time complexity can be improved to O(d - nnz(A) + d3). The actual
computation should be done as follows: compute A’z first, which gives O(nnz(A)), then compute
(AT A)~1 which gives O(d?), and finally compute (AT A)~1(ATz).

However, by using OSE of [CW13] one can achieve:

(4)) + O(d*/e2)
e O(nnz(4)log(1/e)) + O(d* log(1/e))

(Here, O(f) £ f -10g®1(f))

e O(nnz

2.2 Low Rank Approximation

Problem Statement Given a matrix A € R"*" find a matrix B with rank(B) = k which
minimizes |4 — B|%.

This low rank approximation problem with Frobenius norm can also be relaxed by allowing € error:

Find B’ s.t. |[A— B'|% < (1+4¢) mBin |A - B|%
rank(B)=k

When ¢ = 0, Singular Value Decomposition (SVD) gives the best rank-k approximation of A
by selecting top k singular values and corresponding singular vectors. SVD requires O(n?) of
computational time.

However by using Power method/subspace iteration:

e Each iteration takes O(n%k) time.

e For Frobenius norm approximation, bound is not known.

e By allowing spectral error, O(n?k/e?) is possible per iteration.
Also, utilizing OSE can give better time bound:

o O(nnz(A)) + O(nk?/e* + k3 /)

For a dense matrix A, rank-k matrix approximation using random projection was introduced by
[Sarlos06, CWO09].

3 Oblivious Subspace Embedding

Definition 1. Defined on parameters (m,n,d, €, ). An Oblivious Subspace Embedding (OSE) is a
distribution on matrices S € R™*™  s.t. V d-dimensional subspace U of R™, with probability 1 — 0
over S, we have Vx € U that ||Sx|2 = (1 £ €)||x||2



3.1 Regression with OSE
Now, we can solve the problem in easier way with lower dimension using OSE. Rather than solving
x* = argmin, || Az — b||, solve:
7' =argmin ||SAz — Sb||
=argmin ||S(Az — b)||
where (Az —b) € Col(Aob).
(Col(A ob) means a column space of A adjoined with the vector b)

Then from the definition of OSE,

1Az — bl _ (14¢€\ [S(A/ —B)| _ [1+e
< < <1 |
Az —o = \1=¢ ) 1sta oy S \1=¢) =1 H5 ()

Computational time is determined by ” Embedding time + Solve(m,d)”, where Solve(m,d) repre-
sents the time to solve new regression problem with size m x d of SA and m x 1 vector Sb.

One example of OSE is Gaussian random matrix which can be defined as:
Sij =N(0,1/m) (2)

With Gaussian OSE, m = O(d/e?). Therefore, embedding requires O(mnd) = O(d*n/e*) and
Solve(d, m) requires O(d?/e?) computational time. So, total time is O(d?n/e% + d3/€?).

3.2 Fast Johnson-Lindenstrauss

Now, we introduce an important lemma, which is called Johnson-Lindenstrauss (JL) lemma.
Definition 2 (Johnson-Lindenstrauss Lemma). If m = O((1/€2)1og(1/6)), then

Vo, [Aal3 = 1 £l wp. 1-0
Think as this way: given d-dim. subspace U, take e-net: C = (1 + 1/€)? points. If m =
O((1/€2)1og(1/6)), then all are preserved, i.e. C' can be covered.

T = x1+exs + x5+ -+ for xq,--- € C

= | Azl > [|Az1]| — €] Aza|| — || Azs|| — - -
>l—e—(14e)(e+e2+--1)
>1-—3¢

Faster version of Johnson-Lindenstrauss embedding technique was introduced by [KW11]:
If A has RIP of order k, then AD has (¢,27%) JL property, where

+1
+1

+1



Last class, it is shown that Foep, satisfies (k,e) RIP if [Q > (1/e2)klog*n. So, if m = |Q] is
greater than (d/e?)log(1/€)log* n, then subspace embeddings with m = (d/€?) log® n, and compu-
tational time is nlogn. So, with Fast JL, embedding requires O(dnlogn) and Solve(m, d) requires
O((d®/€e?)log’ n).

3.3 [CW13]

To improve the complexity, [CW13] used the sparsity of A. In each column of S, exactly one
element has +1 value defined with hash functions:

h:[n] — [m] < 2-independent
o:[n] — {£1} < 4-independent
therefore OSE matrix S is defined as,
Sh(iyi =0
Let’s prove that above S is OSE by showing:
a,b e R" = (Sa, Sb) ~ (a,b)

Proof. Denote 0;; = I},(;—, (indicator function).

<Sa, Sb> = Z (Z 5r,i0'r,iai> Z 57”,]'0-7”’.7'&5

r=1 =1 j=1
n m
[ (Sot2) | S S it
=1 =1 r=1 izj

= <CL, b> + Z Z (5T,i(5war,iar7jaibj

r=1 i#j
E[(Sa, Sb)] = (a, b)

Now let’s consider the variance, Var[(Sa, Sb)]. (This proof can be referred to [NN13])

(Var[(Sa, Sb)])? = Z > E [02,62,;(a7b? + aibja;b;)]
r=1 i#j
- Consider (r,i), (r,7), (r',"), (', 5")
r=r1"or {27]} = {/L',aj/} — ]E[ : ] 7é 0

Otherwise — E[ - | = 0 by independence.
= Var[(Sa, Sb)] = — Z b7 + aibjajb;)
lsﬁy
< — Zasz
M
<— Za252 *HaHglle%



Let U € R™ 4 have orthonormal columns. We want,

|SUz||]z = (1 £ €)|jz|z Yz eR?
e 2TUTSTSUzs = (1+e)aTx
& |UTSTSU —I|s < e
< ||[UTSTSU — 1|3 < €2

So it is sufficient to show for Frobenius norm case.

(UTSTSU); ; = (SU;, SU;) (U; = i column of U)

Iij = (U, Uj)
Also,
2
Vi, j E[(UTSTSU - 1)}, < =
’ m
T QT 2 2d2 2
= E[|UTSTSU — I|[F] < — < 2
= |UTSTSU — 1|5 < e
which shows that ||SUz|j2 = (1 £ €)||z]]2 Vo € R? ie. S is OSE. O

With this setting of S by [CW13], complexity can be achieved to O(nnz(A4) + (d3/€?) log®(d/e)),
which is O(nnz(A)) + O(d?/€?).

Following Table compares the computational time for introduced algorithms when applied to re-
gression problem. (O notation is omitted.)

No OSE: d-nnz(A)+d® | d®n + d?
with OSE:  Embedding + Solve(d, m)
Gaussian:  mnd = d*nje + d3 /e

Fast JL: dnlogn + (d®/€?)log® n

C-W: nnz(A) + Solve(d, d?/e?)
— d*/é? ¢ bad!
— (d*/e*) log’(d/e)

Table 1: Comparing complexities for various algorithms for regression
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