
Problem Set 4

Sublinear Algorithms

Due Tuesday, November 11

1. Show that any algorithm that computes an `2/`2 approximate sparse
Fourier transform must look at Ω(k log(n/k)/ log log n) positions of the
input, even if the algorithm uses adaptivity.

2. In class we showed how to do O(1)-approximate 1-sparse recovery with
O(log log n) adaptive linear measurements. Show how to do 1 + ε-
approximate 1-sparse recovery with O(1

ε
+ log log n) adaptive linear

measurements.

3. In class we described an algorithm for computing semi-equispaced Fourier
transforms. In particular, we described how if x is k-sparse with sup-
port {1, 2, . . . , k} then you can compute x̂Ω for any set Ω of size k in
O(k logc n) time.

For this problem, show how to solve the reverse problem: suppose that
you are given x̂Ω for an arbitrary set Ω of size k, and know that x is
k-sparse with support {1, 2, . . . , k}. Show how to reconstruct x.

4. In this problem we will consider the sparse Hadamard transform. The
Hadamard transform on N = 2n is given by x̂ = Hx for

Hi,j = (−1)〈i,j〉

where i, j ∈ {0, 1}n are identified with [N]. The fast Hadamard trans-

form gives an O(N logN) time algorithm for converting x to X̂. We will
show how to recover a K-sparse x̂ from query access to x in O(K logcN)
time.

(a) Suppose that x̂ is approximately 1-sparse, i.e. there exists an i
such that |x̂i| > 0.99‖x̂‖2. Use a linear code to find x̂ with O(n)
samples from x and O(nc) time.

1

(b) Now let’s look at extending this to K-sparse recovery. Suppose
K = 2k, and consider the K-dimensional hadamard transform of
the vector y ∈ RK given that contains xi for all i with the last
n− k bits equaling some fixed value r:

yi = xi||r for r ∈ {0, 1}n−k

Express ŷi in terms of x̂ and r.

(c) Now consider any A ∈ {0, 1}n×k and r ∈ {0, 1}n in the orthogonal
subspace to A (i.e., AT r = 0 mod 2), and

yi = xAi+r

Express ŷi in terms of x̂, A and r.

(d) Show how to use this to “hash” the elements of x̂ into K buckets
and perform sparse recovery in each bucket. Give an algorithm
that, for any x̂ ∈ RN , recovers most of the coordinates i where
x̂2
i > ‖x̂−x̂K‖2

2/K, with large constant probability, inO(K log2N)
time.

(e) Conclude with an algorithm to perform `2/`2 recovery inO(K log2N)
time.

5. This problem looks at the 1-sparse Fourier transform. Consider a vector
x ∈ Rn such that there exists an i∗ with

|xi∗ | > (1− ε)‖x‖2.

for a sufficiently small constant ε. Our goal is to find i∗ from samples
of the Fourier transform

x̂j =
n−1∑
i=0

xiω
ij

for ω being a primitive nth root of unity.

(a) Consider observations of the form

fr(a) = x̂r+a/x̂r.

Show that fr(a) ≈ ωai
∗
, in the sense that

Er∈[n] |fr(a)− ωai∗ |2 ≤ 1/100.

2

(b) Show how, using O(log n) samples of fr(a) for random r, a ∈ [n],
you can find i∗ in O(n log n) time with 1/nc failure probability.
This would be sample-efficient but not time efficient.

(c) Now suppose you had a sampling method g(a) such that

|g(a)− ωai∗|2 ≤ 1/100.

always. Show how to use O(log n) samples of g to identify i∗ in
O(log n) time.

(d) Based on the previous part, give a method that usesO(log n log log n)
time and samples of fr(a) to recover i∗ with 1 − 1/ logc n proba-
bility. This is time efficient but not sample efficient.

(e) Combine the above methods – one slow but with exponential fail-
ure probability, and the other fast but needing low failure proba-
bility in each step – to use O(log n) samples of fr(a) and O(log2 n)
time to recover i∗ with constant probability.

Ideally the algorithm should be nonadaptive, but you may use
adaptivity if you wish.

Hint: recover i∗ O(log log n) bits at a time.

3

