Problem Set 4

Sublinear Algorithms

Due Tuesday, November 11

- 1. Show that any algorithm that computes an ℓ_2/ℓ_2 approximate sparse Fourier transform must look at $\Omega(k \log(n/k)/\log \log n)$ positions of the input, even if the algorithm uses adaptivity.
- 2. In class we showed how to do O(1)-approximate 1-sparse recovery with $O(\log \log n)$ adaptive linear measurements. Show how to do $1 + \epsilon$ -approximate 1-sparse recovery with $O(\frac{1}{\epsilon} + \log \log n)$ adaptive linear measurements.
- 3. In class we described an algorithm for computing *semi-equispaced Fourier* transforms. In particular, we described how if x is k-sparse with support $\{1, 2, ..., k\}$ then you can compute \hat{x}_{Ω} for any set Ω of size k in $O(k \log^c n)$ time.

For this problem, show how to solve the reverse problem: suppose that you are given \hat{x}_{Ω} for an arbitrary set Ω of size k, and know that x is k-sparse with support $\{1, 2, \ldots, k\}$. Show how to reconstruct x.

4. In this problem we will consider the sparse Hadamard transform. The Hadamard transform on $N = 2^n$ is given by $\hat{x} = Hx$ for

$$H_{i,j} = (-1)^{\langle i,j \rangle}$$

where $i, j \in \{0, 1\}^n$ are identified with [N]. The fast Hadamard transform gives an $O(N \log N)$ time algorithm for converting x to \widehat{X} . We will show how to recover a K-sparse \widehat{x} from query access to x in $O(K \log^c N)$ time.

(a) Suppose that \hat{x} is approximately 1-sparse, i.e. there exists an i such that $|\hat{x}_i| > 0.99 \|\hat{x}\|_2$. Use a linear code to find \hat{x} with O(n) samples from x and $O(n^c)$ time.

(b) Now let's look at extending this to K-sparse recovery. Suppose $K = 2^k$, and consider the K-dimensional hadamard transform of the vector $y \in \mathbb{R}^K$ given that contains x_i for all i with the last n - k bits equaling some fixed value r:

$$y_i = x_{i||r}$$
 for $r \in \{0, 1\}^{n-k}$

Express \hat{y}_i in terms of \hat{x} and r.

(c) Now consider any $A \in \{0, 1\}^{n \times k}$ and $r \in \{0, 1\}^n$ in the orthogonal subspace to A (i.e., $A^T r = 0 \mod 2$), and

 $y_i = x_{Ai+r}$

Express \hat{y}_i in terms of \hat{x}, A and r.

- (d) Show how to use this to "hash" the elements of \hat{x} into K buckets and perform sparse recovery in each bucket. Give an algorithm that, for any $\hat{x} \in \mathbb{R}^N$, recovers *most* of the coordinates i where $\hat{x}_i^2 > \|\hat{x} - \hat{x}_K\|_2^2 / K$, with large constant probability, in $O(K \log^2 N)$ time.
- (e) Conclude with an algorithm to perform ℓ_2/ℓ_2 recovery in $O(K \log^2 N)$ time.
- 5. This problem looks at the 1-sparse Fourier transform. Consider a vector $x \in \mathbb{R}^n$ such that there exists an i^* with

$$|x_{i^*}| > (1 - \epsilon) ||x||_2.$$

for a sufficiently small constant ϵ . Our goal is to find i^* from samples of the Fourier transform

$$\widehat{x}_j = \sum_{i=0}^{n-1} x_i \omega^{ij}$$

for ω being a primitive *n*th root of unity.

(a) Consider observations of the form

$$f_r(a) = \widehat{x}_{r+a} / \widehat{x}_r.$$

Show that $f_r(a) \approx \omega^{ai^*}$, in the sense that

$$\mathbb{E}_{r\in[n]} |f_r(a) - \omega^{ai^*}|^2 \le 1/100.$$

- (b) Show how, using $O(\log n)$ samples of $f_r(a)$ for random $r, a \in [n]$, you can find i^* in $O(n \log n)$ time with $1/n^c$ failure probability. This would be sample-efficient but not time efficient.
- (c) Now suppose you had a sampling method g(a) such that

$$|g(a) - \omega^{ai^*}|^2 \le 1/100.$$

always. Show how to use $O(\log n)$ samples of g to identify i^* in $O(\log n)$ time.

- (d) Based on the previous part, give a method that uses $O(\log n \log \log n)$ time and samples of $f_r(a)$ to recover i^* with $1 1/\log^c n$ probability. This is time efficient but not sample efficient.
- (e) Combine the above methods one slow but with exponential failure probability, and the other fast but needing low failure probability in each step – to use $O(\log n)$ samples of $f_r(a)$ and $O(\log^2 n)$ time to recover i^* with constant probability.

Ideally the algorithm should be *nonadaptive*, but you may use adaptivity if you wish.

Hint: recover $i^* O(\log \log n)$ bits at a time.