
CS 395T: Sublinear Algorithms Fall 2016

Lecture 13 — October 6, 2016

Prof. Eric Price Scribe: Kiyeon Jeon and Loc Hoang

1 Overview

In the last lecture we covered the lower bound for pth moment (p > 2) and the concepts of packing
numbers, covering numbers, and metric entropy.

In this lecture we discuss Maurey’s Empirical Method for covering numbers and begin moving
into compressed sensing by starting with Restricted Isometric Property (RIP) matrices.

2 Covering Numbers and Maurey’s Empirical Method

2.1 Introduction

Last lecture, we discussed the problem of getting a covering number N for L1 balls using L2 balls.

N(ε, Bd
1 , || · ||2) (1)

Using a volume argument, we were able to establish the following result.

N(ε, Bd
1 , || · ||2) ≤ N(ε, Bd

1 , || · ||1) (2)

N(ε, Bd
1 , || · ||1) ≤ (1 +

2

ε
)d (3)

The first inequality comes from the fact that L1 balls take up less space than L2 balls, so it would
take more of them to do the covering.

From this, we could get metric entropy logN .

logN ≥ d log
1

ε
− d

2
log d (4)

We can then deduce that logN = θ(d log 1
ε ) if ε < d−

1
2
−Ω(1). We are interested in the case where

ε > 1√
d
, and this will be examined in the next section.

2.2 Using Maurey’s Empirical Method for Covering Numbers

Using Maurey’s empirical method, we will show the following:
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Theorem 1. When ε > 1√
d
, N ≤ (2d+ 1)O(1/ε2)

As a result, logN . 1
ε2

log(d).

Proof. Let’s cover the following set:

Bd,+
1 = {x ∈ Rd | ‖x‖1 ≤ 1 and xi ≥ 0 ∀i}

The above set means that
∑
xi ≤ 1 ∀xi ≥ 0.

We can think about a probability distribution over {e1, . . . , ed, 0}:

z =
d∑
i=1

xiei + (1− ‖x‖1) · 0

This implies the following probabilities.

P[z = ej ] = xj ∀j ∈ [d]

P[z = 0] = 1− ‖x‖1

With these, we can get a mean of the probability distribution.

E[z] =
∑

P[z = ej ] · ej + P[z = 0] · 0 =
∑

xj · ej = x

We will draw t samples z1, . . . , zt from the distribution where each z is some ei. After drawing the
samples, we can take the average of the samples:

z̄ =
1

t

t∑
i=1

zi

We want to show that E[‖z̄ − x‖22] ≤ ε2. If we can do this, then if we take all possible z̄, we get an
ε-cover of the space using those z̄ since then all x we can choose will be within ε of some point in
the cover by what we argue above.
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We work this out below:

E[‖z̄ − x‖22] = E[

d∑
j=1

(z̄j − xj)2]

=

d∑
j=1

Var (z̄j)(definition of variance)

=

d∑
j=1

1

t2
Var (

t∑
i=1

(zi)j)(independent variances means you can sum them)

=
1

t

d∑
j=1

Var ((z1)j)

=

∑d
j=1 xj

t
=
‖x‖1
t

≤ 1

t
(by our original definition/choice of x)

Now, let t = 1/ε2. We have the following desired bound:

E[‖z̄ − x‖22] ≤ ε2

This implies that there exists z̄ with ‖z̄ − x‖2 ≤ ε if t = 1/ε2. Then we can pick all z̄ to create
our ε-cover. The number of such z̄ is ≤ (d+ 1)t = (d+ 1)O(1/ε2) (sample t zs, and there are d+ 1
choices for each z, then take the mean).

Therefore, we have a bound on packing number and a bound on the metric entropy.

N ≤ (d+ 1)O(1/ε2)

logN ≤ 1

ε2
log(d+ 1)

This implies logN . 1
ε2

log(d) as desired.

Note that this could be extended to cover a larger space (note we only cover Bd,+
1 , which is a

positive space). The basic proof idea will still go through if we decided to extend it to larger cases.

3 Restricted Isometric Property (RIP) Matrices

We move the discussion towards RIP matricies, which will move us closer to compressed sensing.

3.1 Definition of RIP

We say a vector x ∈ Rn is k-sparse if |supp(x)| = ‖x‖0 ≤ k.

3



Define Tk := {x ∈ Rn|‖x‖0 ≤ k, ‖x‖2 ≤ 1} ⊆ Rn, or the set of all vectors that are k-sparse as well
as have an L2 norm that is less than 1. We want to determine the a bound on the metric entropy
of Tk, logN(ε, Tk, ‖ · ‖2). To do so, we look at logN(ε, Tn, ‖ · ‖2) (Tn ignores sparsity). From what
we covered last class, we can determine that logN(ε, Tn, ‖ · ‖2) ≤ (1 + 2

ε )
d. From here, we can take

a union bound over k-dimensional subspaces (by using
(
n
k

)
) to bound our original packing number:

N(ε, Tk, ‖ · ‖2) ≤
(
n

k

)
(1 +

2

ε
)k

≤ (
en

k
)k(1 +

2

ε
)k

logN(ε, Tk, ‖ · ‖2) ≤ k log(
n ∗ 2e

εk
)

This bound is good as it is something that depends reasonably on k. Using this, we can get a
bound on RIP matrices.

Definition 2. A matrix A ∈ Rm×n is a (k, ε) RIP (Restricted Isometry Property) matrix of order
(k, ε) if ∀k-sparse x, ‖Ax‖2 = (1± ε)‖x‖x

RIP matrices are useful for recovery of vectors:

Theorem 3. Let y = Ax+ e where x is k-sparse and A has (O(k), .1)-RIP. Then, one can recover
an x̂ such that ‖x̂− x‖2 ≤ O(‖e‖2)

Also, let y = Ax where x is not k-sparse and A has RIP. Then, ‖x̂− x‖1 ≤ O(‖x− xk‖1)

We can compare the first bound on x̂ to Count-Sketch. In Count-Sketch, we have Ax where x is
not k-sparse. Then, w.h.p. we get get x̂ with ‖x̂ − x‖2 ≤ (1 + ε)‖x − xk‖2. The second bound of
the theorem is comparable to Count-Min.

Basically, RIP lets us observe good results once we have selected a good A with the RIP.

3.2 Analysis of Number of Rows (m) for a RIP Matrix

How large does m need to be? We need to determine how many rows m there needs to be in
a matrix A in order to satisfy (k, ε) RIP.

Pick A as an i.i.d. (sub)gaussian matrix. For any fixed x, we have that ‖Ax‖22 = (1± ε)‖x‖22 w.p.
1− exp−ε

2m·Ω(1).

We want to be able to get a bound for all x, not fixed x. We could use a union bound, but
the problem is that there are infinitely many x. This is where we can use metric entropy: close
vectors xi (in some space) will be similar in behavior. Therefore, it suffices to take a union bound
over an ε-cover of Tk. m = O( 1

ε2
k log n

εk ) will work. This m is needed so that we can use the
Johnson-Lindenstrauss bound on the L2 norm later in the proof below.

Proof of Existence of an A satisifying (k, ε) RIP Let C be an ε-cover of Tk built as
(
n
k

)
ε-covers

of subspaces with support size k. Now, take x∗ ∈ Tk.

x∗ = x1 + x′, ‖x′‖ ≤ ε, x1 ∈ C
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From the fact that x1 ∈ C and because of a special property of our cover C (the way it was built),
we have that |supp(x1)∪supp(x∗)| ≤ k. From this we have that ‖x′‖0 ≤ k. since we are “rounding”
within the same subspace. Now that ‖x′‖ ≤ ε (since x∗ is at most ε far from x1 since C is an ε-cover)
and ‖x′‖0 ≤ k, we can say x′ ∈ εTk.

Similarly to x∗ above, we can find x2 ∈ C and ‖x′′‖ ≤ ε satyisfying

x′ = ε(x2 + x′′)

Again, with a similar argument to the one we made for x′ above, we can obtain ‖x′′‖0 ≤ k. Again,
we can find an x3 ∈ C and ‖x′′′‖ ≤ ε like above, and we can do this over and over.

As we do this process continuously, we derive the following:

x∗ = x1 + εx2 + ε2x3 + · · · εl−1xl−1 + x(l)

where ‖x(l)‖ ≤ εl, ‖x(l)‖0 ≤ k, xi ∈ C ∀i = 1, . . . , l − 1

Now, let m = O( 1
ε2
k log n

εk ). This size of m allows us to use Johnson-Lindenstrauus for a tail bound,
specifically ‖Ax‖ = (1± ε)‖x‖ ∀x ∈ C by a union bound (see lecture 10 of the Fall 2014 version of
the class). We use this below.

‖Ax∗‖ ≤ ‖Ax1‖+ ε‖Ax2‖+ ε2‖Ax3‖+ · · ·
≤ (1 + ε)(1 + ε+ ε2 + · · · )

≤ 1 + ε

1− ε
= 1 +O(ε)

‖Ax∗‖ ≥ ‖x∗‖ −O(ε)

So, ∀x ∈ Tk,

‖x‖ −O(ε) ≤ ‖Ax‖ ≤ (1 +O(ε))

∀x ∈ Tk with ‖x‖ = 1, ‖Ax‖ = (1 +O(ε))‖x‖ →
∀x ∈ Tk ‖Ax‖ = (1 +O(ε))‖x‖ →

A satisfies (k,O(ε))-RIP if m = O(
1

ε2
k log(

n

εk
))

3.3 Further Considerations and Extensions

3.3.1 Other Considerations for A

1. What about small integer entries in A?

What if Aij ∈ {± 1√
m
} i.i.d.?

It turns out the proof will work for any subgaussian generated matrix. We only used the
Gaussian generated matrix for the JL property for the tail bound.

2. Can we get A to be sparse so we can do computations faster?

This can’t happen: shown on homework.
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3. Can we still hope to store A more efficiently with limited independence?

Probably not, but note that A (a matrix with the RIP property) can be a fixed matrix (i.e.
find once, then reuse).

4. Can we get an explicit matrix?

We can show a k1.9× construction.

5. Are there other matrices that fast to store and compute?

We look at Fourier matrices in the following section.

3.3.2 Extensions

Question: How might we use the Fourier matrix to get a RIP matrix that is easier to deal with?

We have ‖Fx‖2 = ‖x‖2 (note it preserves the L2 norm) where Fij = 1√
n

exp2π
√
−1 i·j

n . By choosing

Ω ⊆ [n] at random (i.e. choose random rows), we get FΩ ×
√

n
m . If |Ω| ≥ 1

ε2
k log n log2 k, then FΩ

has (k, ε)-RIP with “good” probability.

(note that there have been better results for the last term in the inequality above: log5 k[′06], log3 k[′08], log2 k[′16])

Gaussian Fourier

space to store mn m

time to multiply mn n log n

time to multiply by k-sparse vector mk min(mk, n log n)

We can also use Circulant matrices. Such a matrix Cv is shown below.

v1 v2 · · · vn−1 vn
v2 v3 · · · vn v1
...

...
...

...
vn v1 · · · vn−2 vn−1

Similar to what we did for Fourier matrices, we choose (Cv)Ω where Ω is arbitrary on Circulant
matrices. Unlike Fourier, where row selection had to be random, we can choose whichever rows we
want without the need for randomess. v, however, is random (e.g. Gaussian).

The number of rows m is O(k log n log3(k log n)).
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