
CS 395T: Sublinear Algorithms Fall 2016

Lecture 14 — October 13, 2016

Prof. Eric Price Scribes: Cody Freitag, William Swartworth

1 Compressed Sensing

In compressed sensing, the overall goal is to observe an object using as few measurements as
possible. In today’s lecture, we’ll motivate compressed sensing with an application to observing
images. Then we’ll give the precise setup for compressed sensing. Lastly we’ll give an interative
algorithm to solve compressed sensing.

1.1 Single-Pixel Cameras

We will consider taking a picture as a motivating example. A normal camera uses 1000 × 1000
pixels with 1 photosensitive element per pixel. This is typically cheap for normal images since we
can use silicon. However, silicon doesn’t work if you want to capture infrared images, making it
really expensive. As a result, we may try to decrease the number of photosensitive elements needed
at the expense of taking a greater number of measurements per element.

An image can be represented as a vector x = (x1, . . . , xn) where entries of x correspond to individual
pixels. Instead of getting a measurement for each pixel, we could instead get

∑
i bixi = 〈b, x〉 for

some b ∈ {0, 1}n (where we think of the bi’s as lens filters on the camera). We could do this many
times with different filters and about ≈ n/2 ones per filter b. Then with around n different b, we
can reconstruct x just by inverting the b matrix. So we would only need one photosensitive element,
but we’d need n measurements now.

This leads to the fundamental problem in compressed sensing: choose a matrix A such that ob-
serving Ax allows x to be recovered.

1.2 Questions to Consider

Do we really need n measurements?

The answer is yes if we require exact recovery of every possible x. Many situations are more relaxed
than this. For example it might be possible to recover x approximately from Ax, even if Ax is
much smaller than x, if x is known to have some structure. In fact, if x is an image, then we expect
to be able to compress it anyway (using JPEG for example). So it’s reasonable to hope that Ax
could be substantially smaller than x.

How do we model compressibility?

We can often think of compressible data as being sparse with respect to some basis. This is a
familiar idea in the context of lossy compression. To compress an image we start by changing

1

basis—a typical choice is the wavelet basis. If we’ve chosen a good basis, then many entries will be
negligibly small, and we approximate our image as a sparse vector in our chosen basis.

1.3 Compressed Sensing - Specifying the Problem

We begin by choosing A ∈ Rm×n where generally m is much smaller than n.

Making our measurements gives us some vector y = Ax+e, where we assume that ||x||0 ≤ k (where
the 0-norm is defined to be the sparsity). The vector e should be thought of as an error term which
models imprecise measuring equipment.

Our goal is to recover x from y. In other words, we would like to find x̂ ≈ x given y (and knowledge
of the A that we chose).

This can be summarized as follows:

Choose A ∈ Rm×n

Observe y = Ax+ e, where ||x||0 ≤ k and e is noise

Compute x̂ ≈ x from (A, y)

2 Algorithms

Many algorithms exist for compressed sensing:

• Convex Optimization

– L1 minimization, LASSO, Dantzig selector

• Iterative methods

– CoSAMP, AMP, OMP, IHT

Many of these algorithms use a matrix A satisfying RIP(O(k), 0.1) to find x̂ with error ||x̂−x||2 .
||e||2. Fortunately we can construct RIP(O(k), 0.1) in many ways:

• random gaussian with m = O(k log(n/k))

• any JL matrix for δ = 2−O(k log(n/k))

• matrices with low coherence [columns are a1, . . . , an and
|〈ai,aj〉|√
||ai||·||aj ||

< 1
k for all i, j. This is

easy to check but requires m > k2.]

• random rows of Fourier, O(k log n log2 k)

• explicity k2−ε row matrices exist.

We’ll look at IHT (Iterative Hard Thresholding) today.

2

2.1 IHT

First suppose that A satisfies the (3k, ε)-RIP.

This means that for all 3k-sparse x in Rn we have

||Ax||2 = (1 + ε)||x||22
xTATAx = (1 + ε)xTx

|xT (ATA− I)x| ≤ εxTx.

In terms of the operator norm,

||(ATA− I)S×S || ≤ ε,∀S ⊂ [n], |S| ≤ 3k.

So the RIP implies that ATA is approximately the identity on small sets of coordinates.

In the compressed sensing problem, we’re given Y = Ax + e, where x is 3k-sparse, and ||e|| is
“small”.

Let z = AT y = ATAx+AT e. Then AT e should be small noise, and ATAx should be approximately
x as long as x is sparse. So we expect that ||z − x|| is small.

To be more precise, let S be any set of size at most 3k, which we assume contains the support of
x. Then we have

||(z − x)S || ≤ ||(ATA− I)S×S · xS || + ||(AT e)S ||
≤ ε · ||x|| + ||ATS×[m]|| · ||e||.

The bound on ||(AT e)S || was shown in the next class.

Lemma 2.1. Let x, z ∈ Rn, with x k-sparse and with support H. Let S be the set of indices
corresponding to the top k elements of z. Then ||x− zS ||22 ≤ 5 · ||(x− z)H∪S ||22.

Proof. Pair up i ∈ H\S and j ∈ S\H. We know |zj | > |zi|, so we just need x2i+z
2
j ≤ 5·((x−z2i)+z2j).

There are two cases. Either |zi| > |xi|/2, which implies x2i + z2j ≤ 4z2i + z2j ≤ 5z2j . Or, |zi| ≤ |xi|/2,

which implies x2i + z2j ≤ 4(xi − zi)2 + z2j .

Now for z = AT y = AT (Ax) + AT e, let T denote the top k elements of z. Applying the lemma to
T ∪ supp(x) we get

||x− zT ||2 ≤
√

5 · ||(x− z)T∪S ||2
≤
√

5(ε||x|| + 3||e||).

For ε = 0.1, this is at most ||x||/4 + 3||e||.

Now let y′ = A(x− zT) + e = y′ −AzT .

3

The same analysis as before says z′ = AT y′ = ATA(x− zT) + aT e has

||(z′ − (x− zT)) + S|| = ||(x− (zT + z′))S ||
≤ ε||x− zT || + (1 + ε)||e||.

Set x(2) to be the top k elements of zT + z′. According to the lemma,

||x− x(2)|| ≤
√

5||x− (zT + z′)supp(x(2))∪supp(x)||

≤
√

5ε||x− zT || + (1 + ε)||e||
≤ 1/4 · (||x− x(1)|| + 3||e||).

Now we just repeat to a get a sequence of successively better recoveries of x. So set

z(t+1) = AT (y −Ax(t)),

and x(t+1) = top k entries of z(t+1). Our analysis gives us the following:

||x(t+1) − x||≤
1

4
||x(t) − x|| + 3||e||.

Therefore if ||x(t+1)−x|| > 12||e||, then ||x(t+1)−x|| ≤ 1
2 ||x

(t)−x||. Hence, after I = log(||x||/||e||)
iterations, we get a recovery x̂ = x(I) with ||x̂− x|| ≤ 12||e||.

The running time of our algorithm is

O

(
log
||x||
||e||

·matrix/vector multiply

)
.

4

