
CS 395T: Sublinear Algorithms Fall 2016

Lecture 15 — Oct. 18, 2016

Prof. Eric Price Scribe: Ziyang Tang & Mei Wang

1 Overview

In last class, we discussed Compressed Sensing with Interactive Hard Thresholding (IHT). In this
lecture, we continue to study IHT algorithm first and then we start to look at “Model-Based”
Compressed Sensing.

2 Recall for IHT Algorithm

Definition 1. Suppose matrix A ∈ Rm×n has (k, ε)RIP . If for all k-sparse x, ‖Ax‖22 = (1±ε)‖x‖22.
Then this is equivalent to saying as ‖(A>A− I)S∗S‖ ≤ ε for any S ≤ k, S ∈ [n].

Theorem 2. If A has (3k, 0.1)RIP , given y = Ax + e where x is k-sparse, then IHT recovers x̂
with ‖x̂− x‖2 ≤ ‖e‖2.

This theorem indicates that if there is no error, you can recover it exactly. If there is some small
error ε, you will recover with this small norm error.

So how this theorem expected to work? Assume z = A>y = A>Ax + A>e. Let Hk(z) ∈ Rn :=
closest k-sparse approximation for any z ∈ Rn. Then x̂ = Hk(z) has

‖x̂− x‖ ≤ O(ε)‖x‖+ ‖(A>e)S‖.

By looking at Definition 1, for any ω ∈ R|S|, ‖ASω‖ ≤
√

1 + ε‖ω‖, which is equal to saying that
the singular values of AS are less than or equal to

√
1 + ε. The same property holds for A>S . So we

can get

‖x̂− x‖ ≤ O(ε)‖x‖+
√

1 + ε‖e‖
≤ O(ε)‖x‖+ 2‖e‖.

This argue means we can get closer, where two means we can get down to the noise level fast.

Now we will restate the algorithm in order to repeat. Suppose we have current guess x(i), then we
set

x(i+1) = Hk(A>(yAx(i)) + x(i))

= x(i) +A>e+A>A(x− x(i))t.

Run this equation repeatedly until you get to ‖x(l) − x‖ ≤ ‖e‖ after log(‖x‖‖e‖) iterations.

1

If A has (3k, 0.1) RIP, this holds with O(k log n
k) Gaussian rows. Basically, this is optimal in

general.

So what number should we expect of the Gaussian rows? Ω(k) words is necessary. In order to
match “compression”, how is the basic requirement of compression?

(identify support)︸ ︷︷ ︸
k log(n

k
) bits

+ (tell values on support)︸ ︷︷ ︸
k words

If we don’t have noise, we can do that in just k words. But if we want to be robust to noise, we
cannot avoid the k log(nk) issue. This is quite similar to the lower bound for moment estimation by
Gaussian noise last week.

In some circumstances, we don’t need k log(nk) bits to describe k words, because we don’t expect
our vector to be an arbitrary sparse vector. We can do better with structural sparsity, which is
also known as “Model-Based” Compressed Sensing.

3 “Model-Based” Compressed Sensing

Definition 3. Suppose x is k-sparse and supp(x) ∈ F , where F = set of supports. Then m =
O(k + log |F |) suffices for “Model-Based” Compressed Sensing.

We first see some examples of F .

Example 1: Block Sparsity:

If the signal comes in blocks, that is the support of x S consists of several blocks.

Figure 1: Block Sparsity

Suppose the number of the block is B, then we can pick n/B disjoint block, and we need to choose

k/B block out of these blocks, thus the total support number of size k should be |F| =
(n/B
k/B

)
. So

m is approximately log
(n/B
k/B

)
≈ k

B log
(
n
k

)
.

2

Example 2: Tree Sparsity

If we want to find a subset of connected tree that has k nonzeros containing root, how large is the
set of Tree Sparse Supports?

Well, one way to think of a connected subset of tree is to do a tranverse of a tree, and to see how
many different way can we represent a traverse over k connected vertices. If we do a traverse of
all the connected support of the tree, then for each vertex at some root of a subtree, there are 4
choices of next layer of its child information, that is none of its child are in the support, one of its
child is in the support and both of its child are in the support. So we need 2 bits for every vertex
for a tree to represent the traverse, that is totally at most 2k bits. So |F| ≤ 22k, which means
O(k + log|F|) = O(k) suffices.

Figure 2: Tree Sparsity

Tree sparsity can also be used in sparse images. As we can see in the right part of Figure. 2, the
sparse structure with linear operations of the figure can be modeled as a tree model. Our analysis
of this tree sparsity example can be applied in image processing field.

If we assign nonnegative value on every vertex and would like to find the maximum k-sparse support
on a tree, table 1 shows the complexity of this specific problem (which we will prove in homework).

Table 1: algorithm complexity

nk2 easy DP

nk harder DP

n log n O(1) approximation

3

Now we generalize the “Model-Based” compressed sensing.

Theorem 4. Suppose A has (F , 1) model RIP. If for any x with supp(x) ∈ F , we have

‖Ax‖22 = (1± ε)‖x‖22,

Then Guassian Matrix has this for M = O(k + log |F|) with constant ε.

So how to change the algorithm to Model-Based Compressed Sensing?

HF (z) := ẑ
minimize‖ẑ−z‖

with supp(ẑ) ∈ F

Proof. Analysis uses RIP on supp(x(i))∪supp(x(i+1))∪supp(x). So we just need RIP on F⊗F⊗F
with size less than ‖F‖3. If A has (F3, 1) RIP, then it has O(k + log|F|) Gaussian rows.

We need for any z, ‖x−HF (z)‖ ≤ ‖x− z‖.

needs an analysis that doesn’t just pair up elements in supp(x) and supp(Hk(x)).

4

