
CS 395T: Sublinear Algorithms Fall 2016

Lecture 17 — October 25, 2016

Prof. Eric Price Scribes: John Kallaugher & Quinten McNamara

1 Overview

In this lecture, we focus on proving lower bounds for sparse recovery. We define the sparse recovery
problem as: given y = Ax and A ∈ Rm×n, x ∈ Rn, find x̂ such that

‖x̂− x‖p ≤ C · min
k-sparse xk

‖x− xk‖p

In this lecture we will provide and prove lower bounds on m for the following scenarios:

• A is deterministic, p = 2

• A is deterministic, p = 1

• A is randomized, p = 1

2 A is deterministic, p = 2

Consider the case that y = 0. The output must then be x̂ = 0. This means that for any x that
exists in the null space of A (denoted N), x̂ = 0 is a valid solution. Formally

x ∈ N =⇒ Ax = y = 0 =⇒ x̂ = 0

Going back to the sparse recovery guarantee, we get

‖x̂− x‖2 ≤ C min
k-sparse xk

‖x− xk‖2

‖x̂− x‖22 ≤ C2 min
k-sparse xk

‖x− xk‖22
n∑
i=1

x2i ≤ C2
∑
j 6=i

x2i ,∀j ∈ [n]

x2j ≤ (C2 − 1)
∑
j 6=i

x2i

x2j ≤ (C2 − 1)‖x‖22 − x2j

x2j ≤ (1− 1

C2
)‖x‖22

This means that each xj can not have much of the energy of x. Let α = 1− 1
C2 , α < 1.

x2j ≤ α‖x‖22
From this, we will show that the dimension of the null space has an upper bound of

√
α · n

1

Proof. Let v1, v2, . . . , vn−m be the orthonormal basis for N , and e1, e2, . . . en be the standard basis
vectors. Denote the projection of ei on the null space as ProjN (ei). Observe that

ProjN (ei) =

n−m∑
j=1

vjv
T
j ei

< ei, P rojN (ei) > =
n−m∑
j=1

eTi vjv
T
j ei

Since the ProjN (ei) is in the null space, we can use the bound we just found above to provide
an upper bounds for the inner product (since the inner product will just be the ith index of the
projection).

(

n−m∑
j=1

eTi vjv
T
j ei)

2 ≤ α‖ProjN (ei)‖22

n−m∑
j=1

eTi vjv
T
j ei ≤

√
α‖ProjN (ei)‖2

n−m∑
j=1

eTi vjv
T
j ei ≤

√
α

Summing the inequality over i ∈ [n]

n∑
i

n−m∑
j=1

eTi vjv
T
j ei ≤ n

√
α

n−m∑
j=1

‖vj‖22 ≤ n
√
α

n−m ≤ n
√
α

m ≥ (1−
√
α)n

m = Ω(n)

This means we cannot have a deterministic sublinear algorithm that gives the `2/`2 guarantee.

3 A is deterministic, p = 1

3.1 Gilbert-Varshamov Bound

The bound states that ∀q, k ∈ Z, ε ∈ R, ε < 1 − 1
q , ∃S ⊆ [q]k such that the minimum Hamming

distance in S is ≥ εk and
log |S| ≥ (1−Hq(ε)) · k log q

where
Hq(ε) = −ε logq (

ε

q − 1
)− (1− ε)logq(1− ε)

2

Proof. We will prove the Gilbert-Varshamov bound by using a volume covering argument.

|S| ≥ qk

εk−1∑
i=0

(
k
i

)
(q − 1)i

where the denominator represents the size of a ball with radius εk − 1

εk−1∑
i=0

(
k

i

)
(q − 1)i ≤

(
k

εk

)
(q − 1)εk ≈ (q/ε)εk ≈ qεk logq

q
ε ≈ qkHq(ε)

therefore

|S| ≥ qk

qkHq(ε)

taking the log of both sides gives us

log |S| ≥ (1−Hq(ε))k log q

which is the Gilbert-Varshamov bound.

Claim 1. ∃ set S ⊆ {0, 1}n of k-sparse vectors with minimum `1 distance k of size log |S| & k log n
k

Proof. Apply the Gilbert-Varshamov bound, setting q = n
k . Conceptually, this can be achieved

by encoding each character in q as a one-hot vector, consequently each string in [q]k maps to a
k-sparse vector. Furthermore, set ε = 1

2 in order to get a minimum Hamming distance of k, since
each different character will create a difference of 2 (0 where a 1 should be and 1 where a 0 should
be in the string vector).

log |S| ≥ (1−Hn
k
(
1

2
))k log

n

k

Furthermore, we know that (1−Hn
k
(12)) is a constant, thus

log |S| & k log
n

k

This means that the set S is very large, but is also well separated.

3.2 Proof for lower bound of `1/`1

We need to show that we can recover x exactly using the set S, even in the presence of noise.
Suppose we have sparse recovery for C = 3. Consider any x′ = x+w where x ∈ S and ‖w‖1 ≤ k

100 .

Using the guarantee, we have ‖x̂ − x′‖1 ≤ 3k
100 . Therefore, by the triangle inequality we have

‖x̂− x‖1 ≤ 4k
100 , or a looser bound of ‖x̂− x‖1 ≤ k

2 . Since the elements of S are k away from each
other, we can round x̂ to the nearest element of S and recover x exactly.

So we have several balls xi +B1(
k
10) for each xi ∈ S. Given we are maintaining a sketch, each ball

is projected into a larger simplex shape when multiplied by A. Furthermore, we know that every
ball in the projected space is disjoint and lie within the projection of the ball B1(k + k

10) since

3

the maximum `1 distance for each k-sparse binary vector is k and each ball can at most stretch k
10

further away. This ball is A ·B1(
11k
10) Therefore the most balls we can have is

|S| ≤
V ol(A ·B1(

11k
10))

V ol(A ·B1(
k
10))

The balls in the numerator and denominator have the same shape, but different radius. Since
scaling the radius scales the volume exponentially by the dimensionality, the ratio of the volumes
must be 11m (radii are scaled by 11). Thus we get

|S| ≤ 11m

log |S| ≤ m

m & k log
n

k

m = Ω(k log
n

k
)

4 A is randomized, p = 1

We will extend this bound to a randomized A by a reduction to the Augmented Indexing Problem.

Definition 2 (Augmented Index). In the Augmented Indexing problem on n bits, Alice has a string
w of n bits, and Bob has an index i, and the bits (wj)j<i of w that come before i. Alice must send
a message to Bob (without knowing Bob’s index) such that Bob can determine the value of wi.

It can be shown that, even in the randomized model (where Bob only needs to succeed with, say, 2/3
probability), Alice must send Ω(n) bits.

As in the deterministic case, we may use Gilbert-Varshamov to construct a set S of k-sparse vectors
with binary coefficients, separated by at least k

10 , with |S| & k log n
k .

Alice may encode a string of R log |S| (for some R to be determined later) bits as follows: She
chooses R vectors Xj from S (encoding each block of log |S| bits by choosing a vector from S). She

then combines these into the vector X =
∑R−1

j=0
Xj
11j

. She then sends Bob the vector AX, where A
is the sketching matrix.

If Bob can successfully perform `1 recovery (with constant C, say — if C is a larger constant, we
can deal with this by changing the constants in our construction of X), he can recover X1 exactly,

as each Xj has 1-norm no more than k, so ||
∑R−1

j=1
Xj
11j
||1 ≤ k

11
1

1− 1
11

= k
10 . If he successfully recovers

X1, he can then repeat the process on AX − AX1, and iterate until he recovers X⌈
i+1

log |S|

⌉, and

therefore wi.

There are two problems with this method. Firstly, if our failure probability is δ, by repeating
the process we amplify the failure probability to δR. However, we are in the Augmented indexing
model, and so we may assume that Bob knows the bits up to i. He can then use these to determine

the vectors Xj for j <
⌈

i+1
log |S|

⌉
, and so he needs only perform one succesful sparse recovery.

The second problem is that AX is a real-valued vector, and would therefore require infinite com-
munication to send with arbitrary precision. We must therefore argue that this protocol succeeds

4

even if we round AX to use only O(log n) bits per entry. If Y = AX, we can think of our rounded
vector as Y ′ = Y + e where ||e|| ≤ n10. (By using a sufficiently large constant times log n bits.)

WLOG, we may assume that A is orthonormal, as we may use the SVD to decompose A into
UTΣV , and then use V as our sketching matrix, and then apply UTΣ to our sketch vector as a
post-processing step. This will give us

Y ′ = Y + e = A(X + e′)

with ||e′|| ≤ 1
n9 . So Bob will still be able to recover the Xj provided R = O(log n), as the size of

the error will be amplified each time he multiplies X by 11, but this happens at most R times.

However, there is still a flaw in this argument. A sparse recovery algorithm must work for any
fixed X, with good probability, with A chosen at random after X is fixed. But we have changed
X dependent on A (as our rounding depends on A), so we no longer have that guarantee. This
opens up the possibility that, for instance, our recovery algorithm fails if AX is rounded (which will
happen with zero probability if A is chosen from a continuous distribution), but works otherwise.
In order to evade this problem, Bob can add some random noise that is substantially larger than e
but still too small to prevent correct recovery (say, with magnitude of order

√
||e||). As A is chosen

independently of X, most A must work for most X, so this allows us to recover our guarantees.

This means Alice sends O(m log n) bits in total, and so as we know she needs to send Ω(R log |S|) =
Ω(k log n log n

k), we may conclude that

m & k log
n

k
.

5

