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1 Overview

Previously, we have shown that non-adaptive sparse recover requires O(k log n
k ) rows. Today, we

discuss the problem in the adaptive setting, and show lower bounds for both deterministic and
randomized setting.

Adaptive sparse recovery is done by picking ai in a sequential manner. We first pick a1, get 〈a1, x〉,
then select a2, get 〈a2, x〉, continue until we select am and get 〈am, x〉, we use these m measurements
to give an estimate for x. A natural question to ask is, does this sequential procedure give us more
power than ordinary method?

In deterministic setting, we can not do better than Ω(k log n
k ), and for non-adaptive setting, we

also need O(k log n
k ) rows. In randomized setting, a naive lower bound is Ω(k), since you need it

to even knowing the whole support set. On the other hand, it is possible with m = O(k log log n
k ),

and in today’s lecture, we will show that algorithm and as well as a lower bound Ω(k + log log n)
for m, which is tight when the sparsity k = O(1). In the homework, we will show that adaptive

compressed sensing using Fourier matrix has a lower bound Ω(k log(n/k)
log logn ). All the above results are

shown in the setting:

‖x̂− x‖p ≤ (1 + ε) min
k−sparse x′

∥∥∥x− x′
∥∥∥
p

for p = 2, i.e., l2/l2 recovery.

2 Deterministic Setting

Let us take k = 1, and suppose x = ei +w for w ∼ N (0, 1
100nIn) (easy to show that ‖w‖2 ≈

1
10). In

this case, l2/l2 recovery is equivalent to identifying i ∈ [n]. Based on this observation, we can use
the Shannon-Hartley Theorem to find the lower bound.

Theorem 1 (Shannon-Hartley Theorem).

I(x+ w;x) ≤ 1

2
log(1 +

E[|x|2]
E[|w|2]

)

Take any a ∈ Rn, then 〈a, x〉 = ai + 〈a,w〉 = ai + N (0, 1) · ‖a‖2
10
√
n

. Intuitively, we can think of

the measurement as a sample point in a n-mixture of gaussian distribution, since n is large, it is
difficult to identify i. More formally, we will show that log n for m is required, hence getting the
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lower bound for deterministic setting.

I(〈a, x〉; i) =I(〈a, x〉; ai)

≤1

2
log(1 +

E[a2i ]

‖a‖22 /(100n)
)

=
1

2
log 101 = O(1).

In the above equation the expectation on a2i is due to the randomness of x, not a. Therefore,

E[a2i ] =
‖a‖22
n . This implies that with a single measurement, only constant bits of information is

possible. Since identifying i needs at least log n bits, m = O(log n).

Rethink moment estimation lower bound. We used similar method in moment estimation
lower bound. There, we were in the setting of knowing bi = ci + di, where di are independent of ci
and each other, and we bound the mutual information:

I(b; c) ≤
∑

I(bi; ci),

where the left hand side is analogous to I(Ax; i) in our context, and the right hand side is bounded
by mO(1). For more reference and details on applications of the Shannon-Hartley Theorem to data
streams and sparse recovery, see [PW12].

3 Random Setting - 1-sparse

3.1 1-sparse lower bound - x = ei + w

We wonder how big could E[a2i ] be in any given round (assume ‖a‖22 = 1). Since in a non-
deterministic setting, ai can be dependent with measurements from previous rounds and calculating
this quantity is not clear for now, we first consider simple cases, e.g., when we are at the first and
the last round.

• First round: The calculation of E[a2i ] is consistent with the deterministic setting, i.e., E[a2i ] =
‖a‖22
n , and the information gain is constant bits.

• Last round: Since we know enough information about i, E[a2i ] ≤ ‖a‖
2
2 = 1, and the information

gain is bounded by 1
2 log(1 + 100n) = O(log n).

Our guess for round between is that: Suppose at some certain round, we know B bits about i.
Then, we should be able to have E[a2i ] ≈ 2B

n and accordingly, the information we get is bounded
by 1

2 log(1 + 100 · 2B) = O(B). Typically, the bits of information we get after each round grows
like this: B → (1 + c)B → (1 + c)2B → · · · . Since the number of bits grows exponentially, then we
would expect O(log log n) rounds to identify i. A formal proof of this is shown in [PW13], section
3.
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3.2 algorithm when x = ei + w

Consider finding such an algorithm to match the lower bound, our goal is the following: given that
we know i to n

2B
size region, we need to find a n

22B
size region in O(1) measurements.

The general idea of this algorithm is the following:

• Round 1: pick ai =

{
−1 if i < n

2

+1 if i ≥ n
2

. For example, 〈a, x〉 > 0 =⇒ i ∈ [n2 , n] probably.

• After narrowing the possible region of index i, we can decrease the gap when selecting aj ,
since the total noise for each measurement decreases. For example, when narrowing to a n

4
area, we can decrease the gap to 1 from 2.

• If we know i ∈ R is in some region of size |R| = n
2B

, set aj ∈ [−1, 1] for j ∈ R, and 0 elsewhere.

( E[a2j ] ≈ 1 and E[〈a,w〉2] =
‖a‖22
100n ≈

1
2B

.)

3.3 1-sparse in general

In general, we may not get ei as the 1-sparse signal, and may not get Gaussian distribution as
noise. More specifically, the 1-sparse signal is:

x = αai + w,

for some w satisfying ‖w‖2 ≤
α
R . To tackle this, we want to perform linear measurements, and find

a small region of size n
R0.1 where i must land.

In a noiseless setting, this is simplified to the problem of recovering the index of the unique element
knowing that ‖x‖0 = 1, where our solution is:

• Pick v = (1, · · · , 1) and v
′

= (1, 2, · · · , n).

• Calculate y1 = v · x, and y2 = v
′ · x.

• Output y2/y1.

Using this framework, consider if this still works in the noisy version, where ‖w‖1 ≤
α
R . Now,

y1 = α(1± 1

R
),

and
y2 = iα± nα

R
.

Therefore,
y2
y1

= i(
1

1± 1
R

)± n

R(1− 1
R)

= i±O(
n

R
).

Hence, the method still works with noise. Instead of directly calculating y1 and y2, we add ran-
domness to each entry in y1 and y2 to cancel out the noise.

We can identify that B grows exponentially in the algorithm, and hence O(log log n) rounds is
needed.
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4 k-sparse Recovery - An Algorithm with O(k log log(n/k))

In the k-sparse setting, we use the algorithm in 1-sparse recovery problem as a black box.

• Repeatedly do the following:

– subsample 1
k fraction of coordinates

– do 1-sparse recovery

Each round: O(log log n) measurements finds 1 heavy hitter with ≥ 3
4 probability.

After k rounds, we will have found ≥ k
2 heavy hitters with 3

4 probability. With O(k log log n
k )

measurements, we can find 1
2 of the heavy hitters. Then, repeat on rest of the coordinates.

Repeat with k → k
2 →

k
4 →

k
8 . This process will have

k log log
n

k
+
k

2
log log

n
k
2

+
k

4
log log

n
k
4

+ · · · = O(k log log
n

k
)

measurements combined [IPW11].
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