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1 Overview

Last lecture, we talked about adaptive sparse recovery. Today, we will talk about RIP-1, expanders
and SSMP.

2 Sparse Matrix with RIP-1

Recalled from homework 3, we showed that 0-1 matrices that satisfy the RIP-2 cannot be very
sparse. Alternatively, there exists a lower bound m = Ω(k2) that an 0-1 matrix A ∈ Rm×n with d =
O(logn) ones per column satisfies RIP-2. But A can satisfy the following RIP-1 property [BGIKS08].
Today we will show deterministic sparse recovery and fast-embedding via sparse matrices that
satisfy RIP-1 property.

Definition 1. A has RIP-1 of (k, ε) if ∀k-sparse x, (1− ε)‖x‖1 ≤ ‖Ax‖1 ≤ ‖x‖1.

Definition 2. G = (U, V,E) is a bipartite graph with left-degree d. n = |U |, m = |V |. N(S)
denotes the neighbors of S. G is a unbalanced bipartite expander of (k, ε) if

∀S ⊂ U, |S| ≤ k ⇒ N(S) ≥ (1− ε)d|S|

Claim 3. A random sparse binary matrix with m = 1
ε2
klog nk , d = 1

ε log
n
k satisfies RIP-1(after

scaling by 1
d , d is degree of sparse matrix that is number of ones by column).

Claim 4. More generally, an adjacency matrix of expander graph G(n,m, k, d, ε) has (k, 2ε) RIP-1.

Theorem 5. A random sparse binary matrix with m = 1
ε2
klog nk , d = 1

ε log
n
k is a (k, 2ε) expander

with high probability.

Proof. ∀S of size k, m = 1
ε2
klog nk , d = 1

ε log
n
k . N(S) has dk balls in m bins. Consider all kd edges,

define V1, V2, · · · , Vkd ∈ [m] and be in i.i.d. Let Ei denotes the event that any ball Vi collides with
previous balls, that collides with V1, V2, · · · , Vi−1. We have

Pr[Ei] ≤
i− 1

m
≤ kd

m
≤ ε

Pr[

kd∑
j=1

Ej > εkd] ≤ e−Ω(εdk)

Pr[|N(S)| ≤ (1− 2ε)dk] ≤ e−Ω(εdk)
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Set d = O(1
ε log

n
k )

⇒ Pr[|N(S)| ≤ (1− 2ε)dk] ≤ e−Ω(klog n
k

)

≤ 1

( kn)2k

≤ 1(
n
k

)2
By union bound, all sets S of size k expands with 1− 1

(nk)
probability. For sets of size less than k, if

size is k′, it still works with 1− 1

(nk′)
. So by union bound over k′, all sets of size ≤ k expands with

good probability.

Claim 6. There exists explicit expander constructions for ∀α > 0, d = logn·( logkε )1+ 1
α ,m = k1+αd2.

3 L1 minimization with RIP-1

If we have RIP-1 matrices, we can use L1 minimization to do sparse recovery.
Given y = Ax+ e, pick x̂ = argmin‖x̂‖1 s.t.‖Ax̂− y‖1 ≤ ∆.

Theorem 7. if A has (k,2ε) RIP-1, ‖e‖1 ≤ ∆, then we have ‖x̂− x‖1 . 2∆.

Set z = x̂− x, we have ‖Az − e‖1 = ‖A(x̂− x)− e‖1 = ‖Ax̂− y‖1 ≤ ∆. By triangle inequality, we
have ‖Az‖1 ≤ ‖Az‖1 + ‖e‖1 ≤ 2∆. We only need ‖z‖1 . ‖Az‖1, so that ‖x̂− x‖1 . 2∆ follows.

Lemma 8. if Az = 0, ∀|S| = k, then ‖zs‖1 ≤ 2ε
1−2ε‖z‖1.

Proof. Partition [n] into S0
⋃
S1
⋃
· · ·
⋃
SL, |Sl| = k in decreasing order of zi, and S = S0. m =

1
ε2
klog nk , d = 1

ε log
n
k . Then |N(S)| ≈ d|S| = dk = O(εm).
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Pick A′ = rows of A cooresponding to N(S), Az = 0⇒ A′z = 0.

0 = ‖A′z‖1
= ‖A′zs +

∑
l≥1

(A′zsl)‖1

≥ ‖A′zs‖1 − ‖
∑
l≥1

(A′zsl)‖1 (by triangle inequality)

≥ ‖A′zs‖1 −
∑
l≥1

‖A′zsl‖1 (by triangle inequality)

≥ (1− 2ε) · d · ‖zs‖1 −
∑
l≥1

(# edges from Sl to N(S)) ·max
i∈sl
|zi| (by definition of RIP-1)

E[# edges from Sl to N(S)] =
d

m
· |N(S)| · k < dk

m
· dk < dk

m
·mε = εmk(by dk < εm)

w.h.p[# edges from sl to N(S)] < 2εmk

≥ (1− 2ε) · d · ‖zs‖1 − 2εmk ·
∑

l≥1 ‖zsl−1
‖1

k
(by decreasing order of zi)

≥ (1− 2ε) · d · ‖zs‖1 − 2ε · d · ‖z‖1

⇒ ‖zs‖1 ≤ 2ε
1−2ε‖z‖1

4 Sequential Sparse Matching Pursuit

Suppose x is sparse, given y = Ax (A is random sparse RIP-1 binary matrix), for each i, how
to estimate xi? We can minimize ‖y − A(x̂i · ei)‖1, it turns out that x̂i = median

N(i)
(yi) (similar to

’count-sketch’).

Algorithm: SSMP
1) Let x(0) = 0
2) For r = 1, 2, · · · , T = O(log(‖x‖1/‖e‖1))

a) For t = 1, 2, · · · , 10k

• x̂i ← median
j∈N(i)

(y −Ax(r))j

• Let i be the largest term of x̂

• Let x(r) ← x(r) + x̂iei

b) Let x(r+1) = Hk(x
(r)) (the top k values of x(r))

3) Report x′ = x(T )

The idea of proving SSMP is using the Lemma below: Given y = Ax,
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Lemma 9. There exists i s.t. ‖y −Ax̂i · ei‖1 ≤ (1− 1
10k )‖y‖1

Therefore each step x(r) = x(r) + x̂iei decreases ‖y −Ax(r)‖ by 1− Ω(1)
k , after O(k) steps, we have

‖y −Ax(r)‖ ≤ 1

10
‖y −Ax(r−1)‖

repeat log(‖x‖1ε ) times converges to ‖y −Ax∗‖1 ≤ ε.
A more detailed proof can be found at [BI09].

How fast is SSMP? It will take log(‖x‖1ε ) times sequentially add O(k) single terms to minimize
‖y −Axiei‖1.
Naive update will take O(knd) per loop. Can do better with O(dnlog(n))
We can spend nd times for the first update and will find all the neighbors in y. For every successive
time, it modifies d elements of y by looking at all neighbors of these.
⇒ d2n

m ≈
dn
k log(n).
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