
CS 395T: Sublinear Algorithms Fall 2016

Lecture 2 — August 30, 2016

Prof. Eric Price Scribes: Loc Hoang and Vasileios-Orestis Papadigenopoulos

1 Overview

In the last lecture, we briefly introduced the three main areas that will be covered in the class along
with examples.

• Data streams

• Property testing

• Compressed sensing

In this lecture, we discussed concentration inequalities and presented a sublinear algorithm for
the distinct elements problem.

2 Concentration Inequalities

2.1 Markov’s Inequality

Definition 1. Let X ≥ 0 be a random variable and t > 0.

Pr[X ≥ t] ≤ E[X]

t
(1)

Proof. For t ≥ 0, the following is straightforward.

E[X] ≥ t · Pr[X ≥ t]

If we divide both sides by t, the result is Markov’s inequality.

2.2 Chebyshev’s Inequality

Definition 2. For any random variable X, µ = E[X], σ2 = V ar[X] = E[(X − µ)2]:

Pr[|X − µ| ≥ t] ≤ σ2

t2
∀t > 0 (2)

1

Proof. Given t > 0:

Pr[|X − µ| ≥ t] = Pr[(X − µ)2 ≥ t2]

Since (X − µ)2 is itself a random variable, we can apply Markov’s inequality.

Pr[(X − µ)2 ≥ t2] ≤ E[(X − µ)2]

t2

The numerator is simply variance. This proves Chebyshev’s Inequality.

Pr[(X − µ)2 ≥ t2] ≤ σ2

t2

2.3 Chernoff Bounds

Definition 3. Let X be a random variable that is the sum of many independent variables , i.e.:

X =

n∑
i=1

xi, where xi ∈ {0, 1}

Let µ = E[X]. In this case, for all ε > 0, the following bounds hold.

Upper Tail Bound

Pr[X ≥ (1 + ε)µ] ≤ e−
ε2

2+ε
µ (3)

Lower Tail Bound

Pr[X ≤ (1− ε)µ] ≤ e−
ε2

2
µ (4)

Note that, apart from the aforementioned inequalities, Chernoff Bounds appear in many different
forms in the literature. Generally, the choice of the Chernoff bound that gives ”good” results
is usually a problem-specific procedure. The proof for these Chernoff bounds will be covered in
another lecture.

3 Distinct Elements

3.1 Problem Introduction

Consider a sequence (data stream) consisting of numbers from a universe [n] (e.g. 1, 1, 4, 5, 200, 3, · · · ∈
[n]). Our goal is to estimate the number k of distinct elements in this sequence. Note that trying

2

to find the exact value of k is a non-trivial task in terms of space complexity. An easy approach
would be to hash every element in the stream and count how many distinct elements appeared.
However, this task would require O(n) space.

For this reason, the following algorithm is proposed that can approximate the value of k within a
factor of (1 + ε) with probability 1− δ, running only in sublinear space.

We demonstrate here for ε = 1, or an approximation factor of 2.

3.2 A Relaxed Decision Problem

To estimate k, we first solve the following relaxed problem.

Define t to be some threshold number. Is k larger than 2t or less than t?

An algorithm that answers this question implies another algorithm to estimate k. This is accom-
plished by testing a number of different thresholds (e.g. 1, 2, 4, 8, 16, . . . , 2q, . . .) until we find an
interval where k can lay. We will have then estimated k within a factor of 2.

Algorithm:

• Choose a random subset S ⊆ [n] such that Pr[x ∈ S] = 1
t , ∀x ∈ [n].

• Record whether {S ∩ stream 6= ∅}.

Let S be a subset of the universe [n]. For each element i ∈ [n], let Pr[i ∈ S] = 1
t .

Define Y to be the event where {S ∩ stream 6= ∅}. We can determine the probability of Y .

Pr[Y] = 1− Pr[Ȳ]

= 1− (1− 1

t
)k (5)

The last equality follows by the fact that the probability of Y not happening is the same the
probability of all k elements falling outside of S.

Considering the cases that need to be distinguished, we can see the following.

Pr[Y |k ≤ t] ≤ 1− (1− 1

t
)t ≈ 1− 1

e
≈ 63.2% (6)

Pr[Y |k ≥ 2t] ≥ 1− (1− 1

t
)2t ≥ 1− 1

e2
≈ 86.5% (7)

Given the gap between these values, we have managed to distinguish between a ”more likely” and
a ”less likely” event. Therefore, if we run the same procedure n times independently, we get the
following random variables Y1, Y2, . . . , Yn. We can do this for multiple ts in parallel as well. Since
the gap between the 2 probabilities exists, it will be possible to determine around which t our k

3

exists within a factor of 2 since there will be a threshold where k ≤ t becomes k ≥ 2t. We can use
that change to determine an estimate of k.

If n ≥ O(log 1
δ), we get the right answer with probability 1− δ.

The total space we will use is O(log logn
δ log n) in addition to the space used by the randomness

requirement. log logn
δ is from the number of times we independently run a test for Y , and δ can be

changed to trade off between space and accuracy. The log n comes from the number of ts we run
in parallel.

3.3 Dealing with the Randomness Requirement

In the previous algorithm, we did not take into account the space complexity due to the use of
randomness, i.e., the creation of the random set S ⊆ [n]. Generally, there are several ways to deal
with the randomness requirement in an algorithm:

1. Ignore the issue completely.

• Using the randomness of the input data, if it is considered sufficient.

• Using cryptographic hash functions.

• Developing algorithms in the Random Oracle Model.

2. Psuedo-random number generators.

3. Use a limited dependence on randomness.

Returning to the discrete elements problem, we are interested in third aforementioned option.
Specifically, we will be using pairwise independent hashes to facilitate/limit randomness.

Definition 4. Pairwise Hash Functions. Let H be a family of functions of the type hi[n]→ [B].
We say that family H is pairwise independent if for every x, y ∈ [n] such that x 6= y and for every
α, β ∈ [B] it is the case that

Prh∈H[h(x) = α ∩ h(y) = β] =
1

B2

For example, let B a prime number greater than n. The following family of functions is pairwise
independent:

H = {hc,d(x) = cx+ d mod B|c, d ∈ [B]}

3.4 Distinct Elements, Revisited

Now, using the previous hash function for the creation of S, we have that

Pr[x ∈ S] = Pr[h(x) = 0] =
1

B

4

Note that, for any sequence of events A1, A2, . . . An, we can extract an upper and a lower bound to
the probability of their union using the following relations:

∑
i

Pr[Ai]−
∑
i<j

Pr[Ai ∩Aj] ≤ Pr[A1 ∪A2 ∪ · · · ∪An] ≤
∑
i

Pr[Ai]

Therefore, we can see that

k

B
≥ Pr[S ∩ stream 6= ∅] ≥ k

B
−
∑
i<j

Pr[xi ∈ S ∩ xj ∈ S]

The first inquality holds since the stream has k items with each item having a 1
B chance of appearing

in the subset S.

We also can see that

Pr[S ∩ stream 6= ∅] ≥ k

B
−

∑
i<j

Pr[x ∈ S ∩ y ∈ S]

≥ k

B
− k(k − 1)

2
Pr[x ∈ S ∩ y ∈ S]

≥ k

B
(1− k − 1

2B
)

The final transition above happens since the probability of x, y ∈ S is 1
B2 .

Given this, we can see that

Pr[Y |k ≤ t] ≤ t

B

Pr[Y |k ≥ 2t] ≥ 2t

B
(1− t

B
)

where Y is {S ∩ stream 6= ∅}.

Since all we need is the second value to be greater than the first, choosing B = 10t, we get Pr[Y |k ≤
t] ≤ 0.1 and Pr[Y |k ≥ 2t] ≥ 0.18. Therefore, if we take O(log(1δ)) repetitions using different hash
functions from the pairwise independent family, with probability 1− δ we can distinguish between
the 2 cases and proceed as we discussed previously.

In conclusion, we can see that the total space we use for the execution of our algorithm using hash
functions is O(log n log logn

δ log n), where O(log n) are the times needed to test different values of

t, O(log logn
δ) is the cost of the trials, and O(log n) the cost of hashing.

3.5 A General Proof

It is possible to adapt this proof for ε = 1 to the more general case as was discussed at the end of
the lecture.

5

