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Lecture 21 — November 8, 2016

Prof. Eric Price Scribes: William Hoza and Vasileios-Orestis Papadigenopoulos

1 Overview

Last time, we began a proof that a matrix consisting of a random small subset of the rows of a
Fourier matrix has the RIP “in expectation.” Today, we complete the proof of this theorem.

Let F ∈ Cn×n be a Fourier matrix. For our purposes, the important properties of this matrix are
that for all i, j, |Fij | ≤ 1, and

〈Fi, Fj〉 =

{
0 if i 6= j

n if i = j.

Let Ω to be a multiset of m random rows of the Fourier matrix F . Observe that for any set s ⊆ [n],

E[F TΩ×sFs×Ω] = mEi∈[n][F
T
i Fi] = mIn.

Define

∆
def
= E

[
sup
s:|s|≤k

∥∥∥∥Ik×k − 1

m
F TΩ×sFs×Ω

∥∥∥∥
]
,

so that ∆ is a measure of the expected RIP error of FΩ. Our goal is to show that ∆ is small.

2 Recap of last class

First we symmetrize and Gaussianize: to bound ∆, it suffices to bound

E
Ω,g

[∥∥∥∥∥∑
i∈Ω

gix
s
ix
s
i
T

∥∥∥∥∥
]
, (1)

where xi is the column vector F Ti and g1, . . . , gm are independent Gaussians. In fact, we will bound
the expectation over g alone in Equation ?? for an arbitrary Ω. Let Σk be the set of k-sparse unit
vectors. Then

(??) ≤ E

[
sup
yi∈Σk

∣∣∣∣∣∑
i∈Ω

gi〈xi, y〉2
∣∣∣∣∣
]
≤ 2E

 sup
yi∈Σk

∑
i∈Ω

gi〈xi, y〉2︸ ︷︷ ︸
Gy

 .
This is a Gaussian process. Last class, we showed that it can be bounded by Dudley’s entropy
integral, giving

m∆ .
∫ ∞

0

√
logN(Σk, d, u) du,

where d(y, z) = E[(Gy −Gz)2]
1
2 .
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3 Bounding Dudley’s entropy integral

3.1 Bounding the Gaussian process metric

By the definition of our Gaussian process,

Gy −Gz =
∑
i∈Ω

gi(〈xi, y〉2 − 〈xi, z〉2),

and hence

d(y, z) = (
∑
i

(〈xi, y〉2 − 〈xi, z〉2)2)
1
2

= (
∑
i

((〈xi, y + z〉〈xi, y − z〉)2))
1
2

≤ (
∑
i

(〈xi, y + z〉)2)
1
2 ) max

i∈Ω
|〈xi, y − z〉|

= ‖FΩ(y + z)‖2‖FΩ(y − z)‖∞
≤ (2 sup

y′∈Σk

∥∥FΩy
′∥∥)‖FΩ(y − z)‖∞

≤ 2
√

(1 + ∆)m‖FΩ(y − z)‖∞,

where the last inequality follows from the fact that:

∀y ∈ Σk : yT
(
I − 1

m
F TΩFΩ

)
y ≤ 1 + ∆

⇒ ‖FΩ − y‖22 ≤ m(1 + ∆)⇒ ‖FΩ − y‖2 ≤
√
m(1 + ∆).

In general, if d, d′ are two metrics on a set X with d ≤ d′ everywhere, N(X, d, u) ≤ N(X, d′, u),
just by the definition of N . Therefore,

m∆ .
∫ +∞

0

√
logN(Σk, d, u)du

≤
∫ ∞

0

√
logN(Σk, ‖FΩ‖∞,

u

2
√
m(1 + ∆)

) du

= 2
√
m(1 + ∆)

∫ ∞
0

√
logN(Σk, ‖FΩ‖∞, u) du.

3.2 Road map for the rest of the proof

Our goal, now, is to show something like∫ ∞
0

√
logN(Σk, ‖FΩ·‖∞, u) du .

√
k. (2)

If we manage to do that, we’ll be able to conclude that

√
m∆ .

√
1 + ∆

√
k ⇒ ∆ .

√
1 + ∆

√
k

m
.
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This would mean that for some m . 1
ε2
k, ∆ ≤ ε

√
1 + ∆, which implies ∆ . ε like we want. (In

fact, we’ll prove a slightly weaker bound than Equation ??, leading to a slightly larger number of
measurements m.)

3.3 Bounding N(Σk, ‖ · ‖F,∞, u) using the ‖ · ‖1 norm

Let ‖y‖F,∞ = ‖Fy‖∞. By Cauchy-Schwartz, Σk ⊆ B1 ·
√
k. Therefore,∫ ∞

0

√
logN(Σk, ‖FΩ·‖∞, u) du ≤

∫ ∞
0

√
logN(Σk, ‖ · ‖F,∞, u) du

≤
√
k

∫ ∞
0

√
logN(B1, ‖ · ‖F,∞, u) du.

To bound N(B1, ‖ · ‖F,∞, u), observe that since |Fij | ≤ 1 for every i, j, ‖y‖F,∞ ≤ ‖y‖1. Therefore,

N(B1, ‖·‖F∞ , u) ≤ N(B1, ‖·‖1, u).

Using volume ratios, we proved in a previous lecture that

N(B1, ‖ · ‖1, u) ≤
(

1 +
2

u

)n
. (3)

Plugging this into our integral, we obtain∫ 1

0

√
logN du ≤

∫ 1

0

√
n

√
log(1 +

2

u
) .
√
n,

which is not a very good bound. (Remember, we are shooting for a bound that is more like
√
k.)

3.4 Bounding N(Σk, ‖ · ‖F,∞, u) using Maurey’s empirical method

We are going to apply Maurey’s Empirical Method to get a better bound. Choose any y ∈ B1.
Then y belongs to the convex hull of {±ei, 0}. Randomly round y to some zr ∈ {±ei, 0} in such a
way that E[zr] = y. We do this for r = 1 . . . R, independently each time. There is some sufficiently
large R be such that

E

∥∥∥∥∥ 1

R

∞∑
r=1

zr − y

∥∥∥∥∥
F,∞

 ≤ u,∀y.
For such an R, we have N ≤ (2n + 1)R, which is a much better bound on N as long as R is not

too big. So now we turn to bounding R. Define σR = E
[∥∥∥ 1

R

∑R
i=1 zi − y

∥∥∥
F,∞

]
.
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To bound σR, we symmetrize. Draw z′1, z
′
2, . . . z

′
R ∼ same distribution. Then:

σR = E

∥∥∥∥∥ 1

R

R∑
i=1

zi − y

∥∥∥∥∥
F,∞


= E

∥∥∥∥∥ 1

R

R∑
r=1

zr − E

[
1

R

R∑
r=1

z′r

]∥∥∥∥∥
F,∞


≤ E

[∥∥∥∥∥ 1

R

R∑
r=1

sr(zr − z′r)

∥∥∥∥∥
]

(sr ∈ {±1}, i.i.d)

≤ 2E

[∥∥∥∥∥ 1

R

R∑
r=1

srzr

∥∥∥∥∥
]

For any particular coordinate i,

〈 1

R

R∑
r=1

srzr, xi〉 =
1

R

R∑
r=1

sr〈zr, xi〉

Notice that since 〈zr, xi〉 ∈ {0, 1}, this is ≤ 1 in magnitude. Hence, we can apply the Chernoff
bound.

P
[
〈 1

R

∑
zrsr, x〉 ≥ t

]
≤ e

−t2R
2

⇒ P

[∥∥∥∥ 1

R

∑
zrsr

∥∥∥∥
F,∞
≥ t

]
≤ 2ne

−t2R
2

⇒ E

[∥∥∥∥ 1

R

∑
zrsr

∥∥∥∥
F,∞

]
.

1√
R

√
log n ( = u for (2u+ 1)R)

Therefore setting R← logn
u2

we get:

N(B1, ‖·‖F,∞, u) ≤ (2n+ 1)O( logn

u2
) (4)

3.5 Combining the bounds

If we just tried to plug Equation ?? into our integral, we would get a bound of
∫ 1

0
1
u log n du, which

diverges. Instead, we plug in the minimum of the two bounds (Equation ?? and Equation ??):∫ 1

0
min(

1

u
log n,

√
n

√
log

1

u
)du =

∫ 1
n

0

√
n

√
log

1

n
du+

∫ 1

1
n

1

u
log ndu

To conclude:

m∆ .
√
m(∆ + 1)

√
k log2 n

To achieve ∆ ≤ ε, we choose m & 1
ε2
k log4 n.
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3.6 Conclusions

The proof we just finished is by Rudelson and Vershynin [?]. Recently, Haviv and Regev [?] improved
the bound to O( 1

ε2
k log n log2 k). Even this improved bound is worse than the corresponding bound

for Gaussian matrices, but Fourier matrices have the benefit of fast multiplication via the FFT.

We’ve merely bounded the RIP error “in expectation”. One can show that if the number of
measurements m is increased by a factor of C, the probability that the RIP fails is at most e−C

2
.

Recall that when we proved that Gaussian matrices have the RIP, we used the fact that they
satisfy the JL condition. Krahmer and Ward [?] showed that there is a connection going the other
direction (RIP =⇒ JL.) In particular, suppose A satisfies the (k, ε) RIP. We can’t hope for A
itself to satisfy the JL condition, but let D be a diagonal matrix with i.i.d. uniform ±1 entries on
its diagonal. Krahmer and Ward showed that AD has the (4ε, e−Ω(k)) JL condition.

To get a feel for this bound, recall that a Gaussian matrix with

m .
1

ε2
log

1

δ

rows has the (ε, δ) JL condition. By our earlier proof, this shows that a Gaussian matrix with

m .
1

ε2
k log(n/k)

rows has the (k, ε) RIP. By applying the Krahmer-Ward bound, this implies that a Gaussian matrix
with

m .
1

ε2
log

1

δ
log

n

log(1/δ)

rows has the (ε, δ) JL condition. So we lose something, but not much.

By combining the Krahmer-Ward bound with the proof that Fourier matrices satisfy the RIP, we
get a Fourier-based matrix which satisfies the (ε, δ) JL condition with

1

ε2
log

1

δ
log2 log

1

δ
log n

rows. Even with the diagonal sign flipping, this matrix still allows for O(n log n) embedding.

Naturally, this raises the question of whether we can get the “best of both worlds” for JL embed-
dings. That is, can we construct a JL matrix with O( 1

ε2
log(/δ)) rows which admits O(n log n) time

embedding? In general, this is an open question, but if

m <

√
n√

log n log log 1
δ

,

then yes, by simply composing a Fourier embedding with a Gaussian embedding.
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