
CS 395T: Sublinear Algorithms Fall 2016

Lecture 3 — September 1, 2016

Prof. Eric Price Scribe: William Hoza

1 Overview

We continue discussing the distinct elements problem. Recall that in this problem, you receive as
input a stream S = (x1, x2, . . . ), with each xi ∈ [n], and you are supposed to compute k = #{v ∈
[n] : v appears in S}. Topics for today:

• Review of the algorithm from last lecture.

• The LogLog algorithm, which is more space efficient.

• Generalizing the algorithm from last lecture to work in the turnstile model.

• Space complexity lower bounds via a connection with one-way communication complexity.

2 Review of last lecture

Recall the algorithm from last lecture:

1. For t = 1, 2, 4, 8, . . . , n, in parallel:

(a) For r = 1 to R ≤ O(log logn
δ ), in parallel:

i. Pick a random hash function ht,r : [n]→ [10t] from pairwise independent family H.

ii. Record Yt,r =

{
1 if some v ∈ S satisfies ht,r(v) = 0

0 otherwise.

(b) Compute the empirical average Ŷt = 1
R

∑R
r=1 Yt,r.

(c) Set zt =

{
1 if Ŷt > 0.14

0 otherwise.

(d) Output 2
∑

t zt .

Analysis We showed last time that if k < t, then P[zt = 0] ≥ 1 − δ
logn , while if k > 2t, then

P[zt = 1] ≥ 1− δ
logn . Therefore, by the union bound, the output of the algorithm is within a factor

of 2 of k with probability at least 1− δ. The space used by this algorithm is

O((log2 n) · (log log n+ log(1/δ))).

1



3 The LogLog algorithm

Suppose we pick a function h : [n] → [0, 1] at random, and then compute Y = minv∈S h(v). How
does Y relate to k? Intuitively, one would expect that Y would be about 1/k, and indeed one can
show with calculus that E[Y ] = 1

k+1 . This suggests that to compute k, we should output 1/Y − 1.
Unfortunately, Y has too much variance for this to be a good idea. Naturally, we can deal with the
variance by taking several independent trials. This is the idea behind the LogLog algorithm. Fix
ε > 0; the algorithm will output a (1 + ε)-approximation, except for a 1/4 probability of failure.
Here is the algorithm:

1. For i = 1 to m ≤ O(1/ε2), in parallel:

(a) Pick a random function hi : [n]→ [0, 1].

(b) Record Yi = minv∈S h(v).

2. Compute Ŷ = 1
m

∑m
i=1 Yi.

3. Output 1/Ŷ − 1.

Proof of correctness For each i, the probability that Yi exceeds its expectation by a factor of
c decays exponentially with c:

P
[
Yi >

c

k

]
=
(

1− c

k

)k
≤ e−c.

Therefore,

E[Y 2
i ] =

∫ ∞
0

P[Y 2
i ≥ t] dt ≤

1

k2
·
∫ ∞
0

e−
√
t dt =

2

k2
.

Since Var(Yi) ≤ E[Y 2
i ], it follows that Var(Yi) ≤ 2

k2
. It follows that

Var(Ŷ ) = Var

(
1

m

m∑
i=1

Yi

)
=

1

m2
Var

(
m∑
i=1

Yi

)
=

1

m2

m∑
i=1

Var(Yi) ≤
2

k2m
.

Obviously E[Ŷ ] = E[Yi] = 1
k+1 , so by Chebychev’s inequality, for any t > 0,

P
[∣∣∣∣Ŷ − 1

k + 1

∣∣∣∣ > t

]
≤ 2

k2mt2
.

Plugging in t = ε/k gives

P
[∣∣∣∣Ŷ − 1

k + 1

∣∣∣∣ > ε

k

]
≤ 2

mε2
.

If m = 8/ε2, this is ≤ 1/4. All that remains is to show that our choice of t was good enough to
guarantee that the algorithm’s output is approximately correct. In the case that Ŷ is within t of
its expectation, we can upper bound the algorithm’s output by

1/Ŷ − 1 ≤ 1
1

k+1 −
ε
k

− 1 ≤ k + 2ε

1− 2ε
≤ (1 + 3ε)k + 3ε

for small enough ε, which is at most (1 + 6ε)k. A similar analysis will lower bound the algorithm’s
output. By replacing ε with ε/6 everywhere, we see that m ≤ O(1/ε2) trials suffice to achieve a
1 + ε approximation with 1/4 probability of failure.
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Space efficiency How much space do we need to use for storing the hi functions? In the random
oracle model, none. The random oracle model can be avoided by using appropriate “min-wise
independent” hash functions, but we’ll skip that. How much space do we need to record each Yi
value? Of course, we can’t actually store Yi to infinite precision; we will need to choose our method
for representing an approximation of Yi in a space-efficient manner.

We need a representation which allows us to compare two numbers and which guarantees good
multiplicative accuracy. One simple strategy would be to store the first O(log n) bits of the binary
expansion of Yi. This would give ± 1

nc additive error. The multiplicative error would be at most
1± 1

nc assuming Yi ≥ 1
nc , which occurs with high probability.

A smarter strategy exploits the fact that as k increases, the Yi values will be decreasing. We just
store the order of magnitude, i.e. the number of leading zeroes. This requires only O(log log n)
bits, as long as we cap the number of zeroes at O(log n). One can show that even with the error
introduced by rounding, the algorithm has a low probability of failure.

HyperLogLog is a practical variant of the LogLog algorithm. For example, with n = 109, using 1.5
kB of memory, the HyperLogLog algorithm achieves ε = 2%.

4 The turnstile model

We now generalize to the turnstile model. In this model, the algorithm tracks a vector x ∈ Rn
(think of it as a histogram.) Initially, x = 0. The algorithm is given updates of the form (i, α),
meaning that xi is replaced with xi + α. At the end, the algorithm should output f(x) for some
function f . For example, in the distinct elements problem, we are trying to compute

f(x) = ‖x‖0 = #{i : xi 6= 0}.

So far, we’ve only considered “insertion streams,” where α = 1 every time. It is also natural to
consider deletions (α = −1), and in fact the model makes sense even if we allow arbitrary α ∈ R.
In the strict turnstile model, we assume that xi ≥ 0 for all i at all times.

4.1 Distinct elements in the turnstile model

There’s no clear way to generalize the LogLog algorithm. On the other hand, the algorithm from
last lecture readily admits generalization. Rather than defining Yt,r to indicate whether some v ∈ S
satisfies ht,r(v) = 0, we can define Yt,r to be the number of v ∈ S satisfying ht,r(v) = 0. Explicitly,
when we are given (v, α), if h(v) = 0, we set Yt,r ← Yt,r + α, thereby ensuring that

Yt,r =
∑
v∈[n]
h(v)=0

xv.

In the strict turnstile model, this works well, because at the end of the updates, we can just check
whether Yt,r > 0. In the non-strict turnstile model, this idea doesn’t make so much sense, because
an insertion and a deletion might cancel each other out.
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5 Lower bounds

The algorithms we’ve seen for the distinct elements merely give approximately the right answer
(ε > 0), and they have had some small failure probability (δ > 0.) Unfortunately, both of these
defects are unavoidable! In class, we will prove that δ > 0 is necessary; on the homework, we will
prove that ε > 0 is necessary. These lower bounds hold even against the insertion-only model.

Theorem 1. Fix any deterministic (1 + 0.1)-approximation algorithm for the distinct elements
problem in the insertion-only streaming model. For any k, n ∈ N with k ≤ n, there is a stream over
the universe [n] with ≤ k distinct elements on which the algorithm uses Ω(k) space.

How do we prove a theorem like this? Typically, lower bounds for streaming algorithms come from
one-way communication complexity.

5.1 One-way communication complexity

The setup here is that Alice has x, Bob has y, Alice sends m, and Bob outputs f(x, y). For various
f , there are known lower bounds on |m| for any protocol in which Bob gets the right answer with
(say) 3/4 probability.

As a trivial example, computing the function f : X × Y → X defined by f(x, y) = x requires
Ω(log |X|) bits of communication. For a less trivial example, consider the indexing problem, where
Alice holds x ∈ {0, 1}n, Bob holds i ∈ [n], and the goal is to compute f(x, i) = xi.

Theorem 2. In any protocol for the indexing problem with failure probability at most 1/8, Alice
sends Ω(n) bits to Bob.

We’ll need an elementary fact from coding theory:

Lemma 3. For every n, there exists X ⊆ {0, 1}n with minimum Hamming distance more than n/3
with |X | ≥ exp(Ω(n)).

Proof of Lemma 3. Start with X = ∅. Repeatedly add a string x ∈ {0, 1}n with dist(x,X ) > n/3
as long as such a string exists. By the Chernoff bound, for any y ∈ {0, 1}n, if we pick x ∈ {0, 1}n
uniformly at random, then

P[dist(x, y) ≤ n/3] ≤ exp(−Ω(n)).

So by the union bound, at any stage in this process,

P[dist(x,X ) ≤ n/3] ≤ |X | · exp(−Ω(n)).

As long as this probability is less than 1, the process will continue. Therefore, we can achieve
|X | ≥ exp(Ω(n)).

Proof of Theorem 2. By reduction from the trivial example. Let X ⊆ {0, 1}n be as in Lemma 3.
Alice gets x ∈ X and sends whatever she would send in the indexing protocol. Bob simulates his
behavior in the indexing protocol on every i ∈ [n], obtaining a string y ∈ {0, 1}n. Each position
of y has only a 1/8 chance of disagreeing with the corresponding position of x, so by the Chernoff
bound, with high probability, dist(x, y) < n/6. In this case, Bob can recover x just by finding the
nearest codeword in X to y. Hence, Alice must have sent Ω(log |X |) = Ω(n) bits.
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Remark In the augmented indexing problem, Bob gets x1, x2, . . . , xi−1 in addition to i. It turns
out that the augmented indexing problem still requires Ω(n) bits of communication. Observe that
if Bob additionally got xi+1, . . . , xn, Alice could just send the parity of x (one bit).

5.2 Connection with streaming algorithms

Proof of Theorem 1. By reduction from the trivial communication complexity example. For a
warm-up, consider a distinct elements algorithm with ε = δ = 0. Alice gets x ∈ {0, 1}k. She
uses this to construct a subset Sx = {(i, xi) : 1 ≤ i ≤ k}, which we can think of as a subset of the
universe [n] for any n ≥ 2k. She feeds Sx to the streaming algorithm and sends the sketch (i.e. the
state of the algorithm) to Bob.

To check if x = y, Bob feeds Sy to the algorithm. If x = y, the number of distinct elements won’t
change. But if x 6= y, the number of distinct elements will increase by at least 1. By trying every
y, Bob can learn x. Hence, Alice must have sent Ω(k) bits.

Now, to prove the theorem, let’s deal with ε = 0.1, δ = 0. Let X ⊆ {0, 1}k be as in Lemma 3.
Alice gets x ∈ X , and they proceed as before, except that Bob only checks y ∈ X . If x = y, again,
the number of distinct elements remains k, but if x 6= y, then the number of distinct elements will
go up to at least (4/3)k. These two cases can be distinguished by our approximation algorithm, so
again, Bob can learn x. Hence, Alice must have sent Ω(log |X |) = Ω(k) bits.
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