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1 Overview

We previously discussed Markov’s Inequality, Chebyshev’s Inequality, and Chernoff Bounds, which
progressively require more assumptions for tighter concentration at the tails.

Markov’s Inequality

Let X ≥ 0 and t > 0. Then,

Pr[X ≥ t] ≤ E[X]

t
.

Chebyshev’s Inequality

Let µ := E[X], σ2 := Var[X] = E[(X − µ)2], and t > 0. Then,

Pr[|X − µ| ≥ t] ≤ σ2

t2
.

Chernoff Bounds

Let X =
∑n

i=1Xi such that Xi ∈ [0, 1], fully independent, and µ := E[X]. Then,

Pr[|X − µ| > t] ≤ e−C
t2

σ2

for some constant C.

Today, we will look at how to improve the failure probability for the distinct elements problem from
last class. Along the way, we will begin to develop some tools that will allow for tighter analysis of
the LogLog algorithm.

2 Improving Distinct Elements

Recall the LogLog algorithm from last class:

1. For i = 1 to m, in parallel:

(a) Pick a hash function hi : [n]→ [0, 1].

(b) Record Yi = minx∈S hi(x).

2. Compute Ŷ = 1
m

∑m
i=1 Yi.

3. Output 1/Ŷ − 1.
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Note n is the size of the universe, S is the stream, and k is the true number of distinct elements in
the stream. We showed last time that Var(Yi) . 1/k2. Using Chebyshev’s Inequality, this implies
that m = O(1/ε2) trials suffice to get |Ŷ − µ| ≤ ε/k with probability at least 3/4. What if instead
we want |Ŷ −µ| ≤ ε/k with at least 1−δ probability? We have that Var(Ŷ ) . 1

n2m
, so Chebyshev’s

tells us m = O( 1
ε2δ

) trials suffice.

We want to improve the dependency of m on δ from 1/δ to log(1/δ), which we can go about in two
different ways. Either we can find a different algorithm with a better dependence on δ, or we can
show that our current algorithm suffices.

2.1 Median of Means

We want to find a different algorithm that calculates Ỹ such that |Ỹ −µ| ≤ ε/k using fewer samples.
We will solve this using the “median of means” approach. So we will split our trials in to R groups,
S1, . . . , SR, and set

Ỹ = median
i∈[R]

(
mean
j∈Si

Yj

)
.

Let Ei be the indicator of the event |(meanj∈Si Yj) − µ| ≤ ε/k. If at least R/2 of the Ei events
occur, then |Ỹ − µ| ≤ ε/k.

Each Ei ∈ {0, 1} is independent, and if |Si| ≥ O(1/ε2), then Pr[Ei] ≤ 1/4. So using a Chernoff
bound, we get that

Pr

[∑
i

Ei ≥ R/2

]
≤ e−Ω(R).

This means that if R ≥ O(log(1/δ)), then |Ỹ − µ| ≤ ε/k with probability 1− δ. In total,

m = O

(
1

ε2
log

1

δ

)
trials suffice.

In fact, we didn’t need to take the median of the means in order to use O
(

1
ε2

log 1
δ

)
trials. We will

now develop some more tools to eventually show why the taking the mean of O
(

1
ε2

log 1
δ

)
trials

works.

3 Higher Moments

Suppose X has mean zero, and variance σ2 = E[X2]. We can apply Markov’s Inequality as we did
to prove Chebyshev to get a concentration inequality for X. Namely we have,

Pr[|X| ≥ t] = Pr[X2 ≥ t2] ≤ E[X2]

t2
.

Now suppose that X =
∑n

i=1Xi, for n independent, mean-zero Xi ∈ [−1, 1]. Note that E[Xk
i ] ≤ 1

for all values of k, and when k = 1, E[Xi] = 0 since each Xi has mean zero. To apply our second

2



moment bound we would like to estimate E[X2]. Using only pairwise independence, we have

E
[
X2
]

= E

∑
i

X2
i +

∑
i 6=j

XiXj

 =
∑
i

E
[
X2
i

]
≤ n.

From our second-moment bound, this implies that Pr[|X| ≥ t
√
n] ≤ 1/t2.

What if we look at the fourth moment instead? We can apply Markov’s Inequality as before, so

Pr[|X| ≥ t] = Pr[X4 ≥ t4] ≤ E[X4]

t4
.

We can bound E[X4] now using 4-wise independence to get

E

(∑
i

Xi

)4
 =

∑
i

E[X4
i ] +

∑
i 6=j

6 E[X2
i ] E[X2

j ] ≤ n+ 6n(n− 1) ≤ 6n2

This implies that Pr[|X| ≥ t
√
n] ≤ 6/t4. Notice that for large t this beats our second moment

bound, while for small t the second moment wins.

In fact this method extends to all (even) higher moments. The same approach with a slightly more
careful analysis shows that

Pr[|X| ≥ t
√
n] ≤

(√
k

t

)k
for all even k. Furthermore, we only use the fact that the the Xi’s are k-wise independent. So
this is a useful method to concentrate

∑
Xi without full independence that the Chernoff Bound

requires.

If our Xi are fully-independent, then for a given value of t we can optimize this bound over k.
Setting k = t2/e implies that

Pr[|X| ≥ t
√
n] ≤ e−t2/(2e).

In fact, Chernoff claims that for Xi ∈ [0, 1],

Pr[|y − µ| ≥ εµ] ≤ 2e−ε
2/(2+ε)µ.

Instead, for Xi ∈ [−1, 1] we get

Pr[|y − µ| ≥ εµ] ≤ 2e−ε
2µ2/(2en),

which is only worse by a µ/n factor in the exponent.

4 Moment Generating Function

While higher moments can be useful for concentrating random variables, they quickly become
cumbersome to work with. Moment generating functions encapsulate information about all of the
moments within a single, much simpler object.
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The Moment Generating Function of a mean-zero random variable X is

MGF(X) = E
[
eλX

]
= E

[
1 + λX +

λ2X2

2!
+ · · ·

]
.

Following the method of the last section, Markov’s Inequality tells us that

Pr[X > t] = Pr[eλX > eλt] ≤ E[eλX ]

eλt

for all λ > 0. (And we get a similar lower tail for λ < 0.)

In the case of a Gaussian p(t) = 1√
2πσ2

e−t
2/(2σ2), we can express the moment generating function

explicitly:

E[eλX ] =

∫ ∞
−∞

p(t)eλtdt

=

∫ ∞
−∞

1√
2πσ2

e−
1

2σ2
t2+λtdt

=

∫ ∞
−∞

1√
2πσ2

e−
1

2σ2
(t+λσ2)2+σ2λ2

2 dt (By completing the square.)

= e
σ2λ2

2

∫ ∞
−∞

1√
2πσ2

e−
1

2σ2
(t+λσ2)2dt

= e
σ2λ2

2

∫ ∞
−∞

p(t− λσ2)dt

= e
σ2λ2

2 (Since the integral of a gaussian is 1).

So we’ve shown that for X gaussian with mean 0,

MGF(X) = e
λ2σ2

2

Therefore,

Pr[X ≥ t] ≤ e−
t2

2σ2

from setting λ = t/σ2.

Combining this with the lower tail, we get the bound

Pr[|X| ≥ t] ≤ 2e−
t2

2σ2 .

5 Subgaussian Random Variables

What if we want to use the MGF to bound a non-gaussian random variable? It’s possible we can
compute MGF(X) exactly, but it could be the case that our random variable is too complicated.
We define the notion of a subgaussian random variable as one whose moment generating function
is bounded by that of a gaussian.
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Definition 5.1. A mean-zero random variable X is subgaussian with parameter σ2 if for all λ,

E[eλX ] ≤ e
λ2σ2

2 .

In general, one can show that X is subgaussian (up to constant factors in σ) if any of the following
criteria hold:

1. MGF Bound: E[eλX ] ≤ e
λ2σ2

2 for all λ,

2. Tail Bound: Pr[|X| ≥ t] ≤ 2e−
t2

2σ2 for all t > 0, or

3. Moment Bound: E[|X|k] ≤ σkk
k
2 for all k > 0

Remark 5.2. A (possibly non-mean-zero) random variable X is subgaussian with parameter σ2 if
X − E[X] is subgaussian with parameter σ2.

We now give some useful lemmas about subgaussian random variables.

Lemma 5.3. Suppose X is a bounded random variable, i.e. X ∈ [a, b] for a, b ∈ R. Then X is

subgaussian with parameter σ2 =
(
b−a

2

)2
.

Lemma 5.4. If X and Y are subgaussian with parameters s2
1 and s2

2, respectively, and independent,
then X + Y is subgaussian with parameter σ2 = s2

1 + s2
2.

Proof. We’ll directly apply the MGF bound to show this.

E[eλ(x+y)] = E[eλxeλy]

= E[eλx] E[eλy]

≤ e
λ2s21

2 e
λ2s22

2

= e
λ2(s21+s

2
2)

2

5.1 Proof of the Chernoff Bound

With only the previous two lemmas, we have the machinery in place to prove the following version
of the Chernoff Bound.

Theorem 5.5. Let X =
∑n

i=1Xi such that Xi ∈ [0, 1], independent, and µ := E[X]. Then,

Pr[|X − µ| > t] ≤ e−Ω
(
t2

σ2

)

Proof. Since each Xi is bounded by [0, 1], Xi is subgaussian with parameter σ2 =
(

1−0
2

)2
= 1

4 .
Since all Xi are independent, X =

∑n
i=1Xi is subgaussian with parameter n

4 . This means

Pr[|X − µ|] > t] ≤ 2e−2t2/n = e
−Ω

(
t2

n

)
.
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Note that by a similar analysis, if some of the Xi are gaussian or on larger ranges, the same theorem
holds.
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