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1 Overview

In the last lecture we took a more in depth look at Chernoff Bounds and introduced subgaussian
and subexponential variables.

In this lecture we will continue talking about subgaussian variables and related random variables —
subexponential and subgamma, and finally we will give a proof of famous Johnson-Lindenstrauss
lemma using property of subgaussian/subgamma variables.

2 Review of Subgaussian

Definition 1. A random variable X is subgaussian with = E(X) and parameter o if it satisfies
any of the following 3 properties:

1. MGF: ) s
EMX-m] <3 A
2. Tail: ,
t
Pr(| X — p| > t] <2e 27, vVt >0
3. Moments:

E)X — ulF] < o*k*2, VE>0

The above 3 properties are equivalent with constant factor.

3 Example of Coin flip

Here is an example of coin flip, we would like to use the example of its tail behavior to argue that
coin flip is not a subgaussian. After that we will introduce subexponential and subgamma.

Example of Coin Flip : Let Y; be the number of times to flip a coin until the head is up. We
could see that 1

PrYi=j] = 5,vj 2 1



Let Z be the number of times we flip a coin until we meet with K heads. Or we could think Z as
the sum of individual Y;.i.e.

We can easily calculate that E[Y;] =2, and E[Z] = 2K, but we are interested in what Z look like.

Question: If K = 10°%, what will Z look like?

According to the law of large numbers, if we let K to be large, let say K = 105, Z would converge
like a Gaussian with high probability to take a value from

2-10% + 0(10°)

Suppose Z is (sub)Gaussian

Using the tail bound we have:

Pr(Z > 2K + tVK] < %)

If we set t = \/E, then we have:
Pr(Z > 3K] < e~ ¥E)

If we set t = K\/E, then we have:
Pr(Z > K? + 2K] < e )
But back to the definition of Z, we have:

2
PriZ >t > Priy; > #] = o = e

The above two inequality would cast a contradiction! Thus we can see that Z is not subgaussian,
we need a new kinds of random variable to define it.

4 Subexponential and Subgamma

We would give two new definition to random variable X if it satisfies any of the following properties.

Definition 2. A random wvariable X is subexponential with p = E(X) and parameter o if it
satisfies any of the following 3 properties:

1. MGF:
2252

1
Bl <e™3, VA<=
g

2. Taal: )
Pri|X — p| > t] <2e 20, vVt >0



8. Moments:
E[|X —pulf] <o*k*,  VE>0

The above 3 properties are equivalent with constant factor.

Example
Let p(z) = e *,Vz >0, E(z) = 1.
For the MGF E[e**~V], we have:

BlM1] = /e—zez\(z—l)dz

1=
A2 3
:1—)\-1—7 y"—
1—)\
A2 1 1
=14+ =+ XN(=-=
+5 (2 3)+
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<ez \N< —
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We can see that z here is subexponential.

Now we introduce a more general distribution — subgamma, which has a subgaussian center and a
subexponential tail. Here’s the definition.

Definition 3. A random variable X is subgamma with p = E(X) and parameter (o,c) if it
satisfies any of the following 2 properties:

1. MGF: ) s 1
EleMX 1] < e’ , VAl < -

2. Tail:

2

Pr(|X — pu| > t] < 2maz(e” 3027 %),  Vt>0

The above 2 properties are equivalent with constant factor and we will give a short proof here.

Proof. From 1 to 2.

M < 6)\2202_)\t vo < A < 1
= 9 c




Since 5 )
Ao 1 t t

—“M=-(M— ) - —

2 s =) o

We can divide into 2 cases and finally get that

t2
2,2 iy gt 1
PT[X_,UZt]Se)\Q _’\té 62:2 Zf02<c
e 2« otherwise

+2 t

PriX —pu>t] <max(e 227, e 2¢)

Note: This implies with probability 1 —§

1 1
XSN%—U“Z]Ogg—I-Clogg

According to the definition of subgamma, we can see that

sugexp(o) = subgamma(c?, o)

Another property of subgamma is that any sum of 2 independent subgamma, is still a subgamma.
Lemma 4. If X € subgamma(c3,c1),Y € subgamma(c3,ca) independent, then X+Y € subgamma(oi+
o3, max(cy, ca))
Proof. Assume X,Y with 0 mean. Then
E[e)\(X+Y)] _ E[e)\Xe)\Y]
— E[GAX]E[G)\Y]
)\20'% )\20'5 ]_

<e 2z e 2 A< —m—
maz(cy, co)

A2 (02 +02)
= € 2

5 Back to Coin Flip

Let Y; be the number of times to flip a coin until the head is up. We have

2



So Y; € subexp(O(1)) = subgamma(O(1),0(1))
Since the sum of subgamma is still subgamma, we will have Z = "% | Vi € subgamma(O(K), O(1)).

Using the tail bound of subgamma, we have:

2
Pr(z > 2K +t] < e~ 3min( )

Here we can see that Z is approximately a Gaussian with v K deviations.

6 Distinct element problem

We had Pr[Y > t] = (1 —t)" < e~ therefore Y is subexponential(©(1)) = subgamma(n%, 1y,

= m 1
Z Y; = subgamma(—;, —)
pot n?’'n

1 — 1 1
Yy = — § y = sub - =
m- = e gamma(nQ? nm)
~ € . e2m em €2m
Pr|Y —p| > =] < 27255 = 2675
n

Therefore m = O( E% log %) for § failure. Therefore we do not need to split all of our elements into
separate buckets.

Remark: If X € subgaussian(c?) and Y = X? € subexponential(O(c?)) then

2
PriX| >t <2 =
PriY >t < 22

t—0(1)

Prl|lY —E[Y]|>t] <2 2z =20

7 Johnson-Linderstrauss Lemma

Now we move to Johnson-Linderstrauss Lemma(JL-lemma).

At first we would like to see if X € subgaussian(o?), how is X2 behave.

2
Let Y = X2, and let us assume X has zero mean. According to tail bound, Pr[|X| > t] < 2T,

Or we can rewrite it as Pr[Y > t] < 26_%, with centralize with mean of Y which we can consider
t—0(1)
as a constant, we have Pr|Y — E(Y)| >t <2~z <2 %0

So far we can conclude that Y = X? € subexponential(O(c?))

Now we will see JL-lemma.



Lemma 5. (Johnson-Linderstrauss, 1984) Let X1, Xs, ..., X, € R?, there exist Y1,Ys, ...,Y, € R™
such that
Vi, j € [n], |Yi = Yjll2 € (1 £ €)[|Xi — Xl

With m = 0(106%"), not dependent on d!

To prove JL-lemma, we need first to show a similar lemma:

Lemma 6. ((linear) Distributional JL-lemma) There exist a distribution on A € R™? with m =
O(Llog}) such that:
Ve € R4, || Azl € (1 £ ¢)||z|2

with 1 — & probability over A.

We first show if we have Distributional JL, how we can prove JL-lemma.

Proof. (DJL=-JL) Let construct ¥; = AX;. We will have for some i,j
IY; =Yl = [[A(Xs = Xp)l € A £ )| X; = X wp. 1=

So
IYi =Yl € A £l Xi — X;|,Vi,j, wp. >1—n%

Just set d = 55 we will get valid Y;. O

Now we would like to see how to prove for DJL-lemma.

Proof. (DJL-lemma): Let A have i.i.d subgaussian(O(1)) entries with variance 1 and zero mean.
For any X € R,

Y = (AX)i =) AyX,
i

Then we have

ZAQ X2 ZA’L]A kX Xk ZX2 |‘Xv||2

JF#k

Thus
E[|AX 3] = m|| X|?

Since A;; € subgaussian(O(1)), we can see A;; X; € subgaussian(O(Xf)),Y;; = > ;A X; €
subgaussian(O(|| X |3))

We care about ||AX||3, which can be rewrite as

AX[Z=Y]3=)_ Y7
7



And Y; € subgamma(|| X ||3, || X||3) as the section begins we have showed. So ||Y||3 € subgamma(m||X||3, || X|3).

Finally we have:

Pr{[|Y]l3 — E[[Y[3]] > eml|X][3] < 2e

1 1
<6, ifm>0(€—210g5)

Just this week, Larsen and Nelson showed that O(ei2 logn) is optimal!



